Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067305    DOI: 10.1088/1674-1056/acaa27
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Research on self-supporting T-shaped gate structure of GaN-based HEMT devices

Peng Zhang(张鹏)1,†, Miao Li(李苗)2, Jun-Wen Chen(陈俊文)2, Jia-Zhi Liu(刘加志)2, and Xiao-Hua Ma(马晓华)1
1 Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Advance Material and Nanotechnology, Xidian University, Xi'an 710071, China
Abstract  A self-supporting T-shaped gate (SST-gate) GaN device and process method using electron beam lithography are proposed. An AlGaN/GaN high-electron-mobility transistor (HEMT) device with a gate length of 100 nm is fabricated by this method. The current gain cutoff frequency ($f_{\rm T})$ is 60 GHz, and the maximum oscillation frequency ($f_{\rm max})$ is 104 GHz. The current collapse has improved by 13% at static bias of ($V_{\rm GSQ}$, $V_{\rm DSQ}) = (-8 {\rm V}, 10 {\rm V})$, and gate manufacturing yield has improved by 17% compared with the traditional floating T-shaped gate (FT-gate) device.
Keywords:  GaN      high-electron-mobility transistor (HEMT)      self-supporting      T-gate  
Received:  07 September 2022      Revised:  06 November 2022      Accepted manuscript online:  09 December 2022
PACS:  73.61.Ey (III-V semiconductors)  
  85.30.Tv (Field effect devices)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62188102), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JM-316), and the Fund from the Ministry of Education of China (Grant No. 8091B042112).
Corresponding Authors:  Peng Zhang     E-mail:  pengzhang@xidian.edu.cn

Cite this article: 

Peng Zhang(张鹏), Miao Li(李苗), Jun-Wen Chen(陈俊文), Jia-Zhi Liu(刘加志), and Xiao-Hua Ma(马晓华) Research on self-supporting T-shaped gate structure of GaN-based HEMT devices 2023 Chin. Phys. B 32 067305

[1] Tang Y, Shinohara K, Regan D, Corrion A, Brown D, Wong J, Schmitz A, Fung H, Kim S and Micovic M2015 IEEE Electron Dev. Lett. 36 549
[2] Li L, Nomoto K, Pan M, Li W, Hickman A, Miller J, Lee K, Hu Z, Bader S J, Lee S M, Hwang J C M, Jena D and Xing H G2020 IEEE Electron Dev. Lett. 41 689
[3] Çakmak H, Öztürk M, Özbay E and İmer B2021 IEEE Trans. Electron Dev. 68 1006
[4] Sensale-Rodriguez B, Guo J, Wang R, Verma J, Li G, Fang T, Beam E, Ketterson A, Schuette M, Saunier P, Gao X, Guo S, Snider G, Fay P, Jena D and Xing H G2013 Solid-State Electronics 80 67
[5] Dai S, Zhou Y, Zhong Y, Zhang K, Zhu G, Gao H, Sun Q, Chen T and Yang H2018 IEEE Electron Dev. Lett. 39 576
[6] Zhou H, Lou X, Sutherlin K, Summers J, Kim S B, Chabak K D, Gordon R G and Ye P D2017 IEEE Electron Dev. Lett. 38 1409
[7] Moon J S, Grabar B, Wong J, Chuong D, Arkun E, Morales D V, Chen P, Malek C, Fanning D, Venkatesan N and Fay P2021 IEEE Electron Dev. Lett. 42 796
[8] Zhong Y H, Zhang Y M, Zhang Y M, Wang X T, Lü H L, Liu X Y and Jin Z2013 Chin. Phys. B 22 128503
[9] Huang Y A, Liang C Y, Peng K P, Chen K M, Huang G W, Li P W and Lin H C2020 IEEE Electron Dev. Lett. 41 397
[10] Ranjan K, Arulkumaran S, Ng G I and Vicknesh S2014 Appl. Phys. Express 7 044102
[11] Chen J, Liu Z, Wang H, He Y, Zhu X, Ning J, Zhang J and Hao Y2022 IEEE Trans. Electron Dev. 69 51
[12] Arulkumaran S, Ng G I and Vicknesh S2013 IEEE Electron Dev. Lett. 34 1364
[13] Denninghoff D J, Dasgupta S, Lu J, Keller S and Mishra U K2012 IEEE Electron Dev. Lett. 33 785
[14] Sun B, Zhang P, Zhang T, Shangguan S, Wu S and Ma X2020 Microelectronic Engineering 229 111337
[15] Zhang P, Chen J, Zhang T, Wang M, Yang M and Ma X2022 Microelectronic Engineering 258 111754
[16] Gao S, Zhou Q, Liu X and Wang H2019 IEEE Electron Dev. Lett. 40 1921
[17] S NORIHIKO (J.P.N. Patent) 3 537 08A [2000-12-19]
[18] Wang H (C.H.N. Patent) 201 910 746 051 [2019-12-20] CN110600542A
[19] Deng J, Shao J, Wan J, Lu B and Chen Y2019 Microelectronic Engineering 208 54
[20] Song B, Sensale-Rodriguez B, Wang R, Guo J, Hu Z, Yue Y, Faria F, Schuette M, Ketterson A, Beam E, Saunier P, Gao X, Guo S, Fay P, Jena D and Xing H G2014 IEEE Trans. Electron Dev. 61 747
[1] High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction
Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉). Chin. Phys. B, 2023, 32(7): 078503.
[2] Assessing high-energy x-ray and proton irradiation effects on electrical properties of P-GaN and N-GaN thin films
Aoxue Zhong(钟傲雪), Lei Wang(王磊), Yun Tang(唐蕴), Yongtao Yang(杨永涛), Jinjin Wang(王进进), Huiping Zhu(朱慧平), Zhenping Wu(吴真平), Weihua Tang(唐为华), and Bo Li(李博). Chin. Phys. B, 2023, 32(7): 076102.
[3] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[4] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[5] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[6] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[7] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[8] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[9] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[10] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[11] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[12] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[13] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[14] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[15] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
No Suggested Reading articles found!