Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078503    DOI: 10.1088/1674-1056/ac8ce6
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction

Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉)
University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  A vertical GaN field-effect transistor with an integrated self-adapted channel diode (CD-FET) is proposed to improve the reverse conduction performance. It features a channel diode (CD) formed between a trench source on the insulator and a P-type barrier layer (PBL), together with a P-shield layer under the trench gate. At forward conduction, the CD is pinched off due to depletion effects caused by both the PBL and the metal-insulator-semiconductor structure from the trench source, without influencing the on-state characteristic of the CD-FET. At reverse conduction, the depletion region narrows and thus the CD turns on to achieve a very low turn-on voltage ($V_{\rm F}$), preventing the inherent body diode from turning on. Meanwhile, the PBL and P-shield layer can modulate the electric field distribution to improve the off-state breakdown voltage (${\rm BV}$). Moreover, the P-shield not only shields the gate from a high electric field but also transforms part of $C_{\rm GD}$ to $C_{\rm GS}$ so as to significantly reduce the gate charge ($Q_{\rm GD}$), leading to a low switching loss ($E_{\rm switch}$). Consequently, the proposed CD-FET achieves a low $V_{\rm F}$ of 1.65 V and a high ${\rm BV}$ of 1446 V, and $V_{\rm F}$, $Q_{\rm GD}$ and $E_{\rm switch}$ of the CD-FET are decreased by 49%, 55% and 80%, respectively, compared with those of a conventional metal-oxide-semiconductor field-effect transistor (MOSFET).
Keywords:  GaN field effect transistor      reverse conduction      integrated diode      turn-on voltage  
Received:  03 July 2022      Revised:  19 August 2022      Accepted manuscript online:  26 August 2022
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  51.50.+v (Electrical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61874149 and U20A20208) and the Outstanding Youth Science and Technology Foundation of China (Grant No. 2018-JCJQ-ZQ-060).
Corresponding Authors:  Xiaorong Luo     E-mail:  xrluo@uestc.edu.cn

Cite this article: 

Siyu Deng(邓思宇), Dezun Liao(廖德尊), Jie Wei(魏杰), Cheng Zhang(张成),Tao Sun(孙涛), and Xiaorong Luo(罗小蓉) High-performance vertical GaN field-effect transistor with an integrated self-adapted channel diode for reverse conduction 2023 Chin. Phys. B 32 078503

[1] Mishra U.K, Parikh P, et al. 2002 Proceedings of the IEEE 90 1022
[2] Chen K.J, Haberlen O, et al. 2017 IEEE Transactions on Electron Devices 64 779
[3] Millán J, Godignon G, et al. 2014 IEEE Transactions on Power Electronics 29 2155
[4] Saito W, Takada Y, et al. 2006 IEEE Transactions on Electron Devices 53 356
[5] Kabemura T, Ueda S, et al. 2018 IEEE Transactions on Electron Devices. 65 3848
[6] Zhang B, Wang J Y, et al. 2022 IEEE Electron Device Lett. 43 1025
[7] Loan S A, Verma S, et al. 2017 9th IEEE-GCC Conference and Exhibition 2473-9391
[8] Ji D, Agarwal A, et al. 2018 IEEE Electron Device Letters 39 863
[9] Doring P, Driad R, et al. 2021 IEEE Transactions on Electron Device 68 5547
[10] Agarwal A, Koksaldi O, et al. 2017 Appl. Phys. Lett. 111 233507
[11] Gupta C, Lund C, et al. 2017 IEEE Electron Device Lett. 38 353
[12] Favero D, Santi C D, et al. 2022 IEEE International Reliability Physics Symposium
[13] Xiao M, Gao X, et al. 2019 Appl. Phys. Lett. 114 163503
[14] Zhang R Z, Liu J C, et al. 2022 IEEE Transactions on Power Electronics 37 6253
[15] Sun M, Zhang Y H, et al. 2017 IEEE Electron Device Lett. 38 509
[16] Weiss B, Reiner R, et al 2017 in Proc. IEEE 5th Workshop Wide Bandgap Power Devices Appl. 398-403
[17] Zou X B, Zhang X, et al. 2016 IEEE Electron Device Lett. 37 636
[18] Morita T et al. 2012 in Proc. Int. Electron Devices Meet 721-724
[19] Zhu R P, Zhou Q, et al. 2019 IEEE Journal of Emerging and Selected Topics in Power Electronics 7 1449
[20] Liu C, Khadar R Z, et al. 2018 IEEE Electron Device Lett. 39 1034
[21] Sabui G, Parbrook P J, et al. 2016 AIP Advances 6 055006
[22] Ji D, Li W and Chowdhury S 2018 IEEE Transactions on Electron Devices 65 4271
[23] Gupta C, Chan S H, et al. 2016 IEEE Electron Device Lett. 37 1601
[24] Ji D et al. 2018 IEEE Electron Device Lett. 39 711
[1] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
No Suggested Reading articles found!