|
|
Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films |
Zhiting Gao(高志廷)1,2,†, Minghua Guo(郭明华)1,3,†, Zichen Lian(连梓臣)1,†, Yaoxin Li(李耀鑫)1, Yunhe Bai(白云鹤)1, Xiao Feng(冯硝)1,2,4,5, Ke He(何珂)1,2,4,5, Yayu Wang(王亚愚)1,4,5, Chang Liu(刘畅)6,7,‡, and Jinsong Zhang(张金松)1,4,5,§ |
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 School of Integrated Circuits, Tsinghua University, Beijing 100084, China; 4 Frontier Science Center for Quantum Information, Beijing 100084, China; 5 Hefei National Laboratory, Hefei 230088, China; 6 Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China; 7 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
Abstract We have developed a low-damage photolithography method for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall (QAH) thin films incorporating an additional resist layer of poly(methyl methacrylate) (PMMA). By performing control experiments on the transport properties of five devices at varied gate voltages (Vgs), we revealed that the modified photolithography method enables fabricating QAH devices with the transport and magnetic properties unaffected by fabrication process. Our experiment represents a step towards the production of novel micro-structured electronic devices based on the dissipationless QAH chiral edge states.
|
Received: 03 August 2023
Revised: 24 September 2023
Accepted manuscript online: 09 October 2023
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
42.82.Cr
|
(Fabrication techniques; lithography, pattern transfer)
|
|
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0307100), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 52388201), the National Natural Science Foundation of China (Grant Nos. 12274453 and 92065206), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302502). Chang Liu was also supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202204). Yayu Wang was also supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE. |
Corresponding Authors:
Chang Liu, Jinsong Zhang
E-mail: liuchang_phy@ruc.edu.cn;jinsongzhang@tsinghua.edu.cn
|
Cite this article:
Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松) Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films 2023 Chin. Phys. B 32 117303
|
[1] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126 [2] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41 [3] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167 [4] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 [5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [6] Klitzing K v, G. Dorda and Pepper M 1980 Phys. Rev. Lett. 45 494 [7] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802 [8] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802 [9] Chang C Z, Zhao W, Kim D Y, Wei P, Jain J K, Liu C, Chan M H and Moodera J S 2015 Phys. Rev. Lett. 115 057206 [10] Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F and Tokura Y 2017 Science 358 1311 [11] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731 [12] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201 [13] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L and Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201 [14] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang G, Zhang S C, He K, Ma X, Xue Q K and Wang Y 2015 Phys. Rev. Lett. 115 126801 [15] Liu M, Wang W, Richardella A R, Kandala A, Li J, Yazdani A, Samarth N and Ong N P 2016 Sci. Adv. 2 e1600167 [16] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M and Tokura Y 2017 Sci. Adv. 3 eaao1669 [17] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516 [18] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801 [19] Liu C, Ou Y B, Feng Y, Jiang G Y, Wu W X, Li S R, Cheng Z J, He K, Ma X C, Xue Q K and Wang Y Y 2020 Phys. Rev. X 10 041063 [20] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522 [21] Wang J, Zhou Q, Lian B and Zhang S C 2015 Phys. Rev. B 92 064520 [22] Lian B, Sun X Q, Vaezi A, Qi X L and Zhang S C 2018 Proc. Natl. Acad. Sci. USA 115 10938 [23] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y and Kaneko N H 2022 Nat. Phys. 18 25 [24] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y and Kaneko N H 2020 Appl. Phys. Lett. 116 143101 [25] Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C and Xue Q K 2018 Adv. Mater. 30 1703062 [26] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401 [27] Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801 [28] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [29] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [30] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [31] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641 [32] Tay H, Zhao Y F, Zhou L J, Zhang R, Yan Z J, Zhuo D, Chan M H W and Chang C Z 2023 Nano Lett. 23 1093 [33] Ou Y B, Feng Y, Feng X, Hao Z Q, Zhang L G, Liu C, Wang Y Y, He K, Ma X C and Xue Q K 2016 Chin. Phys. B 25 087307 [34] Volykhov A A, Sánchez-Barriga J, Sirotina A P, Neudachina V S, Frolov A S, Gerber E A, Kataev E Y, Senkovsky B, Khmelevsky N O, Aksenenko A Y, Korobova N V, Knop-Gericke A, Rader O and Yashina L V 2016 Chem. Mater. 28 8916 [35] Volykhov A A, Sánchez-Barriga J, Batuk M, Callaert C, Hadermann J, Sirotina A P, Neudachina V S, Belova A I, Vladimirova N V, Tamm M E, Khmelevsky N O, Escudero C, Pérez-Dieste V, Knop-Gericke A and Yashina L V 2018 J. Mater. Chem. C 6 8941 [36] Andersen M P, Rodenbach L K, Rosen I T, Lin S C, Pan L, Zhang P, Tai L, Wang K L, Kastner M A and Goldhaber-Gordon D 2023 J. Appl. Phys. 133 244301 [37] Zhou L J, Mei R, Zhao Y F, Zhang R, Zhuo D, Yan Z J, Yuan W, Kayyalha M, Chan M H W, Liu C X and Chang C Z 2023 Phys. Rev. Lett. 130 086201 [38] Qiu G, Zhang P, Deng P, Chong S K, Tai L, Eckberg C and Wang K L 2022 Phys. Rev. Lett. 128 217704 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|