Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 117303    DOI: 10.1088/1674-1056/ad0147
RAPID COMMUNICATION Prev   Next  

Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films

Zhiting Gao(高志廷)1,2,†, Minghua Guo(郭明华)1,3,†, Zichen Lian(连梓臣)1,†, Yaoxin Li(李耀鑫)1, Yunhe Bai(白云鹤)1, Xiao Feng(冯硝)1,2,4,5, Ke He(何珂)1,2,4,5, Yayu Wang(王亚愚)1,4,5, Chang Liu(刘畅)6,7,‡, and Jinsong Zhang(张金松)1,4,5,§
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
3 School of Integrated Circuits, Tsinghua University, Beijing 100084, China;
4 Frontier Science Center for Quantum Information, Beijing 100084, China;
5 Hefei National Laboratory, Hefei 230088, China;
6 Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China;
7 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  We have developed a low-damage photolithography method for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall (QAH) thin films incorporating an additional resist layer of poly(methyl methacrylate) (PMMA). By performing control experiments on the transport properties of five devices at varied gate voltages (Vgs), we revealed that the modified photolithography method enables fabricating QAH devices with the transport and magnetic properties unaffected by fabrication process. Our experiment represents a step towards the production of novel micro-structured electronic devices based on the dissipationless QAH chiral edge states.
Keywords:  topological insulator      quantum anomalous Hall effect      fabrication techniques  
Received:  03 August 2023      Revised:  24 September 2023      Accepted manuscript online:  09 October 2023
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0307100), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 52388201), the National Natural Science Foundation of China (Grant Nos. 12274453 and 92065206), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302502). Chang Liu was also supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202204). Yayu Wang was also supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.
Corresponding Authors:  Chang Liu, Jinsong Zhang     E-mail:  liuchang_phy@ruc.edu.cn;jinsongzhang@tsinghua.edu.cn

Cite this article: 

Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松) Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films 2023 Chin. Phys. B 32 117303

[1] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[2] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41
[3] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[4] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[6] Klitzing K v, G. Dorda and Pepper M 1980 Phys. Rev. Lett. 45 494
[7] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[8] Nomura K and Nagaosa N 2011 Phys. Rev. Lett. 106 166802
[9] Chang C Z, Zhao W, Kim D Y, Wei P, Jain J K, Liu C, Chan M H and Moodera J S 2015 Phys. Rev. Lett. 115 057206
[10] Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F and Tokura Y 2017 Science 358 1311
[11] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M and Tokura Y 2014 Nat. Phys. 10 731
[12] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201
[13] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L and Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201
[14] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang G, Zhang S C, He K, Ma X, Xue Q K and Wang Y 2015 Phys. Rev. Lett. 115 126801
[15] Liu M, Wang W, Richardella A R, Kandala A, Li J, Yazdani A, Samarth N and Ong N P 2016 Sci. Adv. 2 e1600167
[16] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M and Tokura Y 2017 Sci. Adv. 3 eaao1669
[17] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater. 16 516
[18] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett. 120 056801
[19] Liu C, Ou Y B, Feng Y, Jiang G Y, Wu W X, Li S R, Cheng Z J, He K, Ma X C, Xue Q K and Wang Y Y 2020 Phys. Rev. X 10 041063
[20] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[21] Wang J, Zhou Q, Lian B and Zhang S C 2015 Phys. Rev. B 92 064520
[22] Lian B, Sun X Q, Vaezi A, Qi X L and Zhang S C 2018 Proc. Natl. Acad. Sci. USA 115 10938
[23] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y and Kaneko N H 2022 Nat. Phys. 18 25
[24] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y and Kaneko N H 2020 Appl. Phys. Lett. 116 143101
[25] Ou Y, Liu C, Jiang G, Feng Y, Zhao D, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C and Xue Q K 2018 Adv. Mater. 30 1703062
[26] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M and Tokura Y 2015 Appl. Phys. Lett. 107 182401
[27] Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[28] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[29] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605
[30] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900
[31] Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J and Mak K F 2021 Nature 600 641
[32] Tay H, Zhao Y F, Zhou L J, Zhang R, Yan Z J, Zhuo D, Chan M H W and Chang C Z 2023 Nano Lett. 23 1093
[33] Ou Y B, Feng Y, Feng X, Hao Z Q, Zhang L G, Liu C, Wang Y Y, He K, Ma X C and Xue Q K 2016 Chin. Phys. B 25 087307
[34] Volykhov A A, Sánchez-Barriga J, Sirotina A P, Neudachina V S, Frolov A S, Gerber E A, Kataev E Y, Senkovsky B, Khmelevsky N O, Aksenenko A Y, Korobova N V, Knop-Gericke A, Rader O and Yashina L V 2016 Chem. Mater. 28 8916
[35] Volykhov A A, Sánchez-Barriga J, Batuk M, Callaert C, Hadermann J, Sirotina A P, Neudachina V S, Belova A I, Vladimirova N V, Tamm M E, Khmelevsky N O, Escudero C, Pérez-Dieste V, Knop-Gericke A and Yashina L V 2018 J. Mater. Chem. C 6 8941
[36] Andersen M P, Rodenbach L K, Rosen I T, Lin S C, Pan L, Zhang P, Tai L, Wang K L, Kastner M A and Goldhaber-Gordon D 2023 J. Appl. Phys. 133 244301
[37] Zhou L J, Mei R, Zhao Y F, Zhang R, Zhuo D, Yan Z J, Yuan W, Kayyalha M, Chan M H W, Liu C X and Chang C Z 2023 Phys. Rev. Lett. 130 086201
[38] Qiu G, Zhang P, Deng P, Chong S K, Tai L, Eckberg C and Wang K L 2022 Phys. Rev. Lett. 128 217704
[1] Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
Chaozhi Huang(黄超之), Chengyang Xu(徐骋洋), Fengfeng Zhu(朱锋锋), Shaofeng Duan(段绍峰), Jianzhe Liu(刘见喆), Lingxiao Gu(顾凌霄), Shichong Wang(王石崇), Haoran Liu(刘浩然), Dong Qian(钱冬), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2024, 33(1): 017901.
[2] Higher-order topological Anderson insulator on the Sierpiński lattice
Huan Chen(陈焕)1, Zheng-Rong Liu(刘峥嵘)1, Rui Chen(陈锐), and Bin Zhou(周斌). Chin. Phys. B, 2024, 33(1): 017202.
[3] Optical study of magnetic topological insulator MnBi4Te7
Zhi-Yu Liao(廖知裕), Bing Shen(沈冰), Xiang-Gang Qiu(邱祥冈), and Bing Xu(许兵). Chin. Phys. B, 2024, 33(1): 017802.
[4] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[5] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[6] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[7] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[10] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[11] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[12] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[13] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[14] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[15] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
No Suggested Reading articles found!