Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040701    DOI: 10.1088/1674-1056/acb0bb
GENERAL Prev   Next  

Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array

Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬)
National Key Laboratory of Science and Technology on Vacuum Electronics, University of Electronic Science and Technology of China, Chengdu 610031, China
Abstract  The GaN high electron mobility transistor (HEMT) has been considered as a potential terahertz (THz) radiation source, yet the low radiation power level restricts their applications. The HEMT array is thought to improve the coupling efficiency between two-dimensional (2D) plasmons and THz radiation. In this work, we investigate the plasma oscillation, electromagnetic radiation, and the integration characteristics of GaN HEMT targeting at a high THz radiation power source. The quantitative radiation power and directivity are obtained for integrated GaN HEMT array with different array periods and element numbers. With the same initial plasma oscillation phase among the HEMT units, the radiation power of the two-element HEMT array can achieve 4 times as the single HEMT radiation power when the array period is shorter than 1/8 electromagnetic wavelength. In addition, the radiation power of the HEMT array varies almost linearly with the element number, the smaller array period can lead to the greater radiation power. It shows that increasing the array period could narrow the main radiated lobe width while weaken the radiation power. Increasing the element number can improve both the radiation directivity and power. We also synchronize the plasma wave phases in the HEMT array by adopting an external Gaussian plane wave with central frequency the same as the plasmon resonant frequency, which solves the problem of the radiation power reduction caused by the asynchronous plasma oscillation phases among the elements. The study of the radiation power amplification of the one-dimensional (1D) GaN HEMT array provides useful guidance for the research of compact high-power solid-state terahertz sources.
Keywords:  GaN HEMT array      two-dimensional (2D) plasmons      THz emission  
Received:  04 November 2022      Revised:  26 December 2022      Accepted manuscript online:  06 January 2023
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  42.72.Ai (Infrared sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92163204, 61921002, and 62171098).
Corresponding Authors:  Yubin Gong     E-mail:

Cite this article: 

Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬) Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array 2023 Chin. Phys. B 32 040701

[1] Siegel P H 2002 IEEE T. Microw. Theory 50 910
[2] Liu S 2006 China Basic Science 7 (in Chinese)
[3] Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D 50 043001
[4] Tonouchi M 2007 Nat. Photon. 1 97
[5] Lewis R A 2014 J. Phys. D 47 374001
[6] Allen S J, Tsui D C and Logan R A 1977 Phys. Rev. Lett. 38 980
[7] Gornik E and Tsui D C 1976 Phys. Rev. Lett. 37 1425
[8] Shur M S 2021 IEEE Sens. J. 21 12752
[9] Otsuji T and Shur M 2014 IEEE Microw. Mag. 15 43
[10] Dyakonov M and Shur M 1993 Phys. Rev. Lett. 71 2465
[11] Knap W, Lusakowski J, Parenty T, et al. 2004 Appl. Phys. Lett. 84 2331
[12] Lusakowski J, Knap W, Dyakonova N, et al. 2005 J. Appl. Phys. 97 064307
[13] Boubanga-Tombet S, Teppe F, Torres J, et al. 2010 Appl. Phys. Lett. 97 262108
[14] Zhou Y, Li X, Tan R, et al. 2013 J. Semicond. 34 022002
[15] Jakštas V, Grigelionis I, Janonis V, et al. 2017 Appl. Phys. Lett. 110 202101
[16] Shalygin V, Moldavskaya M, Vinnichenko M, et al. 2019 J. Appl. Phys. 126 183104
[17] Meziani Y M, Otsuji T, Hanabe M, et al. 2007 Appl. Phys. Lett. 90 061105
[18] Meziani Y M, Handa H, Knap W, et al. 2008 Appl. Phys. Lett. 92 201108
[19] Watanabe T, Satou A, Suemitsu T, et al. 2013 CLEO: 2013, June 9-14, 2013, San Jose, California, pp. 1-2
[20] Hosotani T, Satou A and Otsuji T 2021 Appl. Phys. Express 14 051001
[21] Aizin G R, Mikalopas J and Shur M 2016 Phys. Rev. B 93 195315
[22] Shur M and Gaska R (US patent) 7638817 B2 [2009-10-29]
[23] Elkhatib T A, Kachorovskii V Y, Stillman W J, et al. 2010 IEEE Trans. Microw Theor. Tech. 58 331
[24] Popov V V, Tsymbalov G M, Fateev D V, et al. 2006 Appl. Phys. Lett. 89 123504
[25] Bhardwaj S, Nahar N K, Rajan S, et al. 2016 IEEE Trans. Electron. Dev. 63 990
[26] Nafari M, Aizin G R and Jornet J M 2018 Phys. Rev. Appl. 10 064025
[27] Ardaravičius L, Matulionis A, Liberis J, et al. 2003 Appl. Phys. Lett. 83 4038
[28] Dmitriev A P, Furman A S and Kachorovskii V Y 1996 Phys. Rev. B 54 14020
[29] Dyakonov M and Shur M S 2005 Appl. Phys. Lett. 87 111501
[30] Zhang Y and Shur M S 2020 IEEE Trans. Electron. Dev. 67 4858
[31] Balanis C A 2005 Antenna Theory Analysis and Design, 4th edn. (Hoboken, New Jersey.: John Wiley & Sons, Inc.) pp. 285-384
[1] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[2] Smith-Purcell radiation improved by multi-grating structure
Jing Shu(舒靖), Ping Zhang(张平), Man Liang(梁满), Sheng-Peng Yang(杨生鹏), Shao-Meng Wang(王少萌), and Yu-Bin Gong(宫玉彬). Chin. Phys. B, 2022, 31(4): 044103.
[3] A terahertz on-chip InP-based power combiner designed using coupled-grounded coplanar waveguide lines
Huali Zhu(朱华利), Yong Zhang(张勇), Kun Qu(屈坤), Haomiao Wei(魏浩淼), Yukun Li(黎雨坤), Yuehang Xu(徐跃杭), and Ruimin Xu(徐锐敏). Chin. Phys. B, 2021, 30(12): 120701.
[4] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[5] Investigation of copper sulfate pentahydrate dehydration by terahertz time-domain spectroscopy
Yuan-Yuan Ma(马媛媛), Hao-Chong Huang(黄昊翀), Si-Bo Hao(郝思博), Wei-Chong Tang(汤伟冲), Zhi-Yuan Zheng(郑志远), Zi-Li Zhang(张自力). Chin. Phys. B, 2019, 28(6): 060702.
[6] A 0.33-THz second-harmonic frequency-tunable gyrotron
Zheng-Di Li(李铮迪), Chao-Hai Du(杜朝海), Xiang-Bo Qi(戚向波), Li Luo(罗里), Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2016, 25(2): 029401.
[7] C–H complex defects and their influence in ZnO single crystal
Xie Hui (谢辉), Zhao You-Wen (赵有文), Liu Tong (刘彤), Dong Zhi-Yuan (董志远), Yang Jun (杨俊), Liu Jing-Ming (刘京明). Chin. Phys. B, 2015, 24(10): 107704.
[8] Theoretical models for designing a 220-GHz folded waveguide backward wave oscillator
Cai Jin-Chi (蔡金赤), Hu Lin-Lin (胡林林), Ma Guo-Wu (马国武), Chen Hong-Bin (陈洪斌), Jin Xiao (金晓), Chen Huai-Bi (陈怀璧). Chin. Phys. B, 2015, 24(6): 060701.
[9] Infrared transparent frequency selective surface based on iterative metallic meshes
Yu Miao (于淼), Xu Nian-Xi (徐念喜), Gao Jin-Song (高劲松). Chin. Phys. B, 2015, 24(3): 030701.
[10] A novel slotted helix slow-wave structure for high power Ka-band traveling-wave tubes
Liu Lu-Wei (刘鲁伟), Wei Yan-Yu (魏彦玉), Wang Shao-Meng (王少萌), Hou Yan (侯艳), Yin Hai-Rong (殷海荣), Zhao Guo-Qing (赵国庆), Duan Zhao-Yun (段兆云), Xu Jin (徐进), Gong Yu-Bin (宫玉彬), Wang Wen-Xiang (王文祥), Yang Ming-Hua (杨明华). Chin. Phys. B, 2013, 22(10): 108401.
[11] Design of a reentrant double staggered ladder circuit for V-band coupled-cavity traveling-wave tube
Liu Yang(刘洋), Xu Jin(徐进), Lai Jian-Qiang(赖剑强), Xu Xiong(许雄), Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Huang Min-Zhi(黄民智), Tang Tao(唐涛), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(7): 074202.
[12] Study on a W-band modified V-shaped microstrip meander-line traveling-wave tube
Shen Fei(沈飞), Wei Yan-Yu(魏彦玉), Xu Xiong(许雄), Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), and Wang Wen-Xiang(王文祥) . Chin. Phys. B, 2012, 21(6): 064210.
[13] Research of sine waveguide slow-wave structure for a 220-GHz backward wave oscillator
Xu Xiong(许雄), Wei Yan-Yu(魏彦玉), Shen Fei(沈飞), Huang Min-Zhi(黄民智), Tang Tao(唐涛), Duan Zhao-Yun(段兆云), and Gong Yu-Bin(宫玉彬) . Chin. Phys. B, 2012, 21(6): 068402.
[14] Simulations of a two-stream backward-wave oscillator with a slot-hole structure
Shi Zong-Jun(史宗君), Tang Xiao-Pin(唐效频), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), and Liang Zheng(梁正) . Chin. Phys. B, 2012, 21(1): 018401.
[15] A k-band broadband monolithic distributed frequency multiplier based on nonlinear transmission line
Huang Jie(黄杰), Dong Jun-Rong(董军荣), Yang Hao(杨浩), Zhang Hai-Ying(张海英), Tian Chao(田超), and Guo Tian-Yi(郭天义). Chin. Phys. B, 2011, 20(6): 060702.
No Suggested Reading articles found!