Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128503    DOI: 10.1088/1674-1056/ac8729
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy

Zhaojun Liu(刘昭君)1,2, Lian-Qing Zhu(祝连庆)2,†, Xian-Tong Zheng(郑显通)2, Yuan Liu(柳渊)2, Li-Dan Lu(鹿利单)2, and Dong-Liang Zhang(张东亮)2,‡
1 The School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China;
2 Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science&Technology University, Beijing 100192, China
Abstract  We systematically investigate the influence of InSb interface (IF) engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-II superlattices (T2SLs). The type-II superlattice structure is 120 periods InAs (8 ML)/GaSb (6 ML) with different thicknesses of InSb interface grown by molecular beam epitaxy (MBE). The high-resolution x-ray diffraction (XRD) curves display sharp satellite peaks, and the narrow full width at half maximum (FWHM) of the 0th is only 30-39 arcsec. From high-resolution cross-sectional transmission electron microscopy (HRTEM) characterization, the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished. As the InSb interface thickness increases, the compressive strain increases, and the surface "bright spots" appear to be more apparent from the atomic force microscopy (AFM) results. Also, photoluminescence (PL) measurements verify that, with the increase in the strain, the bandgap of the superlattice narrows. By optimizing the InSb interface, a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78 μ, which can be used for mid-wave infrared (MWIR) detection.
Keywords:  InAs/GaSb type-II superlattice      molecular beam epitaxy      interface      mid-wave infrared  
Received:  10 May 2022      Revised:  18 July 2022      Accepted manuscript online:  05 August 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  02.70.-c (Computational techniques; simulations)  
Fund: Project supported by the Beijing Scholars Program (Grant No. 74A2111113), the Research Project of Beijing Education Committee (Grant No. KM202111232019), the National Natural Science Foundation of China (Grant No. 62105039), and the Research Project of Beijing Information Science & Technology University (Grant No. 2022XJJ07).
Corresponding Authors:  Lian-Qing Zhu, Dong-Liang Zhang     E-mail:  lqzhu_bistu@sina.com;zdl_photonics@bistu.edu.cn

Cite this article: 

Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮) Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy 2022 Chin. Phys. B 31 128503

[1] Gehrz R D, Becklin E E, Pater I D, Lester D F, Roellig T L and Woodward C E 2009 Adv. Space. Res. 44 413
[2] Ring E F and Ammer K 2012 Physiol. Meas. 33 R33
[3] Wu X G 2019 Chin. Phys. B 28 107302
[4] Liu Z, Zhao Z F, Guo H M and Wang Y Q 2012 Acta Phys. Sin. 61 217303 (in Chinese)
[5] Delmas M, Debnath M C, Liang B L and Huffaker D L 2011 Infrared Phys. Techn. 94 286
[6] Rogalski A 2011 Infrared Phys. Techn. 54 136
[7] Alshahrani D O, Kesaria M, Anyebe E A, Srivastava V and Huffaker D L 2021 Adv. Photon. Res. 3 2100094
[8] Mishra P, Pandey R K, Kumari S, Pandey A, Dalal S and Sankarasubramanian R, Channagiri S, Jangir S K, Raman R, Srinivasan T and Rao D V S 2021 J. Alloy Compd. 889 161692
[9] More V M, Kim Y, Jeon J, Shin J C and Lee S J 2021 J. Alloy Compd. 868 159195
[10] Razeghi M, Dehzangi A and Li J 2021 Results in Optics 2 2666
[11] Osbourn G C, Dawson L R, Biefeld R M, Zipperian T E, Fritz I J and Doyle B L 1987 J. Vac. Sci. Technol. A 5 3150
[12] Rogalski A, Kopytko M and Martyniuk P 2017 Infrared Technology and Applications XLIII, April 9-13, 2017, California, United States, 1017715
[13] Haugan H J, Brown G J and Grazulis L 2011 J. Vac. Sci. Technol. B 29 03C101
[14] Cui S N, Jiang D W, Sun J, Jia Q X, Li N, Zhang X, Li Y, Chang F R, Wang G W, Xu Y Q and Niu Z C 2020 Chin. Phys. B 29 048502
[15] Jiang D W, Xiang W, Guo F Y, Hao H Y, Han X, Li X C, Wand G W, Xu Y Q, Yu Q J and Niu Z C 2016 Chin. Phys. Lett. 33 048502
[16] Zhao Y, Teng Y, Hao X, Wu Q, Miao J, Li X and Huang Y 2011 IEEE. Photon. Technol. Lett. 32 19
[17] Rodriguez J B, Christol P, Cerutti L, Chevrier F, and Joullié A 2005 J. Cryst. Growth 274 6
[18] Jasik A, Sankowska I, Czuba K, Ratajczak J, Kozłowski P, Wawro A, Żak D and Piskorski K 2022 Infrared Phys. Techn. 122 104109
[19] Waterman J R, Shanabrook B V, Wagner R J, Yang M J, Davis J L and Omaggio J P 1993 Semicond. Sci. Tech. 8 S106
[20] Sullivan G J, Ikhlassi A, Bergman J, DeWames R E, Waldrop J R and Grein C 2005 J. Vac. Sci. Technol. B. 23 1144
[21] Martyniuk P, Kopytko M and Rogalski A 2014 Opto-Electron. Rev. 22 127
[22] Huang J L, Ma W Q, Wei Y, Zhang Y H, Cui K and Shao J 2014 J. Cryst. Growth 407 37
[23] Xu Z C, Chen J X, Wang F F, Zhou Y, Jin C and He L 2014 J. Cryst. Growth 386 220
[24] Liu Y F, Zhang C J, Wang X B, Wu J and Huang L 2021 Infrared Phys. Techn. 113 103573
[25] Li X C, Jiang D W, Zhang Y and Zhao L C 2016 Superlattice. Microst. 91 238
[26] Qiao P F, Mou S and Chuang S L 2012 Opt. Express 20 2319
[27] Song Y, Wang S, Asplund C, Würtemberg R M V, Malm H, Karim A, Lu X and Shao J 2013 Cryst. Struct. Theory Appl. 2 46
[28] Ashuach Y, Kauffmann Y, Saguy C, Grossman S, Klin O, Weiss E and Zolotoyabko E 2013 J. Appl. Phys. 113 184305
[29] Shen X C 2020 Spectra and Optical Properties of Semiconductors (Third edn.) (Beijing: Science press) p. 99
[30] Varshni Y P 1967 Physica 34 149
[31] Vainshtein I A, Zatsepin A F and Kortov V S 1999 Phys. Solid State 41 905
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[7] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[15] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
No Suggested Reading articles found!