Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057402    DOI: 10.1088/1674-1056/ac5d30

Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8

Juewen Fan(范珏雯)1, Bingyan Jiang(江丙炎)1, Jiaji Zhao(赵嘉佶)1, Ran Bi(毕然)1, Jiadong Zhou(周家东)2, Zheng Liu(刘政)3, Guang Yang(杨光)4, Jie Shen(沈洁)4, Fanming Qu(屈凡明)4, Li Lu(吕力)4, Ning Kang(康宁)5, and Xiaosong Wu(吴孝松)1,6,7,†
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China;
2 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China;
3 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore;
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
5 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
6 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
7 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract  Introduction of spin-orbit coupling (SOC) in a Josephson junction (JJ) gives rise to unusual Josephson effects. We investigate JJs based on a newly discovered heterodimensional superlattice V5S8 with a special form of SOC. The unique homointerface of our JJs enables elimination of extrinsic effects due to interfaces and disorder. We observe asymmetric Fraunhofer patterns with respect to both the perpendicular magnetic field and the current. The asymmetry is influenced by an in-plane magnetic field. Analysis of the pattern points to a nontrivial spatial distribution of the Josephson current that is intrinsic to the SOC in V5S8.
Keywords:  Fraunhofer pattern      Josephson junction      spin-orbit coupling      homointerface  
Received:  29 January 2022      Revised:  01 March 2022      Accepted manuscript online: 
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Key Basic Research Program of China (Grant No.2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos.11574005 and 11774009).
Corresponding Authors:  Xiaosong Wu,     E-mail:
About author:  2022-3-14

Cite this article: 

Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松) Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8 2022 Chin. Phys. B 31 057402

[1] Buzdin A 2008 Phys. Rev. Lett. 101 107005
[2] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2008 Phys. Rev. Lett. 101 107001
[3] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[4] Bergeret F S and Tokatly I V 2015 Europhys. Lett. 110 57005
[5] Wu Y, He J J, Han T, Xu S, Wu Z, Lin J, Zhang T, He Y and Wang N 2019 Phys. Rev. B 99 121406
[6] Liu J F and Chan K S 2010 Phys. Rev. B 82 125305
[7] Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407
[8] Yokoyama T and Nazarov Y V 2014 Europhys. Lett. 108 47009
[9] Konschelle F, Tokatly I V and Bergeret F S 2015 Phys. Rev. B 92 125443
[10] Rasmussen A, Danon J, Suominen H, Nichele F, Kjaergaard M and Flensberg K 2016 Phys. Rev. B 93 155406
[11] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[12] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[13] Lyu Z, Pang Y, Wang J, Yang G, Fan J, Liu G, Ji Z, Jing X, Yang C, Qu F and Lu L 2018 Phys. Rev. B 98 155403
[14] Banerjee A, Sundaresh A, Ganesan R and Kumar P S A 2018 ACS Nano 12 12665
[15] Zheng H and Jia J F 2019 Chin. Phys. B 28 67403
[16] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill) pp. 215–217
[17] Hu J, Wu C and Dai X 2007 Phys. Rev. Lett. 99 067004
[18] Wu H, Wang Y, Xu Y, Sivakumar P K, Pasco C, Filippozzi U, Parkin S S P, Zeng Y J, McQueen T and Ali M N 2021 arXiv: 2103.15809[cond-mat.supr-con]
[19] Misaki K and Nagaosa N 2021 Phys. Rev. B 103 245302
[20] Trimble C J, Wei M T, Yuan N F Q, Kalantre S S, Liu P, Han H J, Han M G, Zhu Y, Cha J J, Fu L and Williams J R 2021 npj Quantum Mater. 6 61
[21] Suominen H J, Danon J, Kjaergaard M, Flensberg K, Shabani J, Palmstrøm C J, Nichele F and Marcus C M 2017 Phys. Rev. B 95 035307
[22] Chen A Q, Park M J, Gill S T, Xiao Y, Reig-i Plessis D, MacDougall G J, Gilbert M J and Mason N 2018 Nat. Commun. 9 3478
[23] Assouline A, Feuillet-Palma C, Bergeal N, Zhang T, Mottaghizadeh A, Zimmers A, Lhuillier E, Eddrie M, Atkinson P, Aprili M and Aubin H 2019 Nat. Commun. 10 126
[24] Beach A, i Plessis D R, MacDougall G and Mason N 2021 J. Phys.: Condens. Matter 33 425601
[25] Zhou J, Zhang W, Lin Y C, Zhou Y, Du H, Tang B, Shi J, Jian B, Cao X, Lin B, Zhu C, Deng Y, Fu Q, Duan R, Wang X, Chen J, Guo S, Guo W, Huang Y, Yao Y, Gao Y, Yao Y, Suenaga K, Wu X S and Liu Z 2021 Heterodimensional superlattice with room temperature anomalous Hall effect, under review
[26] Fan J, Jiang B, Zhao J, Bi R, Zhou J, Liu Z, Kang N, Qu F, Lu L and Wu X 2022 J. Appl. Phys. 131 093903
[27] Pippard A B 1960 Rep. Prog. Phys. 23 176
[28] Kittel C 2005 Introduction to Solid State Physics (New Jersey: John Wiley & Sons) pp. 146, 139
[29] Dubos P, Courtois H, Pannetier B, Wilhelm F K, Zaikin A D and Schön G 2001 Phys. Rev. B 63 064502
[30] Barone A and Paternò G 1982 Physics and Applications of the Josephson Effect (New York: John Wiley & Sons) pp. 96–112
[31] Golod T, Rydh A and Krasnov V M 2010 Phys. Rev. Lett. 104 227003
[32] Golod T, Pagliero A and Krasnov V M 2019 Phys. Rev. B 100 174511
[33] Stan G, Field S B and Martinis J M 2004 Phys. Rev. Lett. 92 097003
[34] Zhang Y and Zhang C 2011 Phys. Rev. B 84 085123
[35] Ren Y, Zeng J, Deng X, Yang F, Pan H and Qiao Z 2016 Phys. Rev. B 94 085411
[36] Liu Z, Zhao G, Liu B, Wang Z F, Yang J and Liu F 2018 Phys. Rev. Lett. 121 246401
[37] Zyuzin V A 2020 Phys. Rev. B 102 241105
[38] Chen C Z, He J J, Ali M N, Lee G H, Fong K C and Law K T 2018 Phys. Rev. B 98 075430
[39] Bocquillon E, Deacon R S, Wiedenmann J, Leubner P, Klapwijk T M, Brüne C, Ishibashi K, Buhmann H and Molenkamp L W 2016 Nat. Nanotechnol. 12 137
[40] Kononov A, Abulizi G, Qu K, Yan J, Mandrus D, Watanabe K, Taniguchi T and Schönenberger C 2020 Nano Lett. 20 4228
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[7] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[11] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[12] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[13] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[14] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[15] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
No Suggested Reading articles found!