INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Characterization of topological phase of superlattices in superconducting circuits |
Jianfei Chen(陈健菲)1,2, Chaohua Wu(吴超华)1,2,†, Jingtao Fan(樊景涛)1,2, and Gang Chen(陈刚)1,2,3 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant (winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.
|
Received: 30 October 2021
Revised: 14 February 2022
Accepted manuscript online: 17 February 2022
|
PACS:
|
85.25.-j
|
(Superconducting devices)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074232,12125406, and 11804204) and 1331KSC. |
Corresponding Authors:
Chaohua Wu
E-mail: sxwuchua@163.com
|
Cite this article:
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚) Characterization of topological phase of superlattices in superconducting circuits 2022 Chin. Phys. B 31 088501
|
[1] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 [2] Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718 1 [3] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005 [4] Wang Z, Bao Z, Wu Y, Li Y, Ma C, Cai T, Song Y, Zhang H and Duan L 2021 Chin. Phys. Lett. 38 110303 [5] Li D Y, Chu J, Zheng W, Lan D, Zhao J, Li S X, Tan X S and Yu Y 2021 Chin. Phys. B 30 070308 [6] Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L, Zhao Y, Wang S, Guo S, Qian H, Liang F, Lin J, Xu Y, Guo C, Sun L, Li N, Deng H, Zhu X and Pan J W 2021 Chin. Phys. Lett. 38 100301 [7] Houck A A, Tüeci H E and Koch J 2012 Nat. Phys. 8 292 [8] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [9] Xue Z Y and Hu Y 2021 Adv. Quantum Technol. 4 2100017 [10] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304 [11] Jin J, Rossini D, Fazio R, Leib M and Hartmann M J 2013 Phys. Rev. Lett. 110 163605 [12] Ye Y, Ge Z Y, Wu Y, Wang S, Gong M, Zhang Y R, Zhu Q, Yang R, Li S, Liang F, Lin J, Xu Y, Guo C, Sun L, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X and Pan J W 2019 Phys. Rev. Lett. 123 050502 [13] Kounalakis M, Dickel C, Bruno A, Langford N K and Steele G A 2018 npj Quantum Inf. 4 38 [14] Roushan P, et al. 2017 Science 358 1175 [15] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507 [16] Orell T, Michailidis A A, Serbyn M and Silveri M 2019 Phys. Rev. B 100 134504 [17] Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H and Wang H 2021 Nat. Phys. 17 234 [18] Gong M, Neto G D, Zha C, Wu Y, Rong H, Ye Y, Li S, Zhu Q, Wang S, Zhao Y, Liang F, Lin J, Xu Y, Peng C Z, Deng H, Bayat A, Zhu X and Pan J W 2021 Phys. Rev. Res. 3 033043 [19] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X and Pan J W 2021 Science 372 948 [20] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X and Pan J W 2019 Science 364 753 [21] Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023 [22] Xu K, Sun Z, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H and Wang H 2020 Sci. Adv. 6 eaba4935 [23] Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 130501 [24] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331 [25] Hu K X, Chen C, Qi L, Cui W X, Zhang S and Wang H F 2021 Phys. Rev. A 104 023707 [26] Wu C, Guan X, Fan J, Chen G and Jia S 2021 Phys. Rev. A 104 022601 [27] Niu J, Yan T, Zhou Y, Tao Z, Li X, Liu W, Zhang L, Liu S, Yan Z, Chen Y and Yu D 2021 Sci. Bull. 66 1168 [28] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S and Sun L 2019 Phys. Rev. Lett. 123 080501 [29] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111 [30] Bandyopadhyay S, Bhattacharya U and Dutta A 2019 Phys. Rev. B 100 054305 [31] Vyas V M and Roy D 2021 Phys. Rev. B 103 075441 [32] Bandyopadhyay S and Dutta A 2019 Phys. Rev. B 100 144302 [33] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304 [34] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302 [35] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 [36] Wang X R, Guo C X, Du Q and Kou S P 2020 Chin. Phys. Lett. 37 117303 [37] Midya B and Feng L 2018 Phys. Rev. A 98 043838 [38] Xie D, Gou W and Xiao T 2019 npj Quantum Inf. 5 55 [39] Wang Y, Lu Y H, Gao J, Chang Y J, Tang H and Jin X M 2019 Phys. Rev. B 103 014110 [40] Stefano L 2019 Opt. Lett. 44 2530 [41] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009 [42] Reagor M, Osborn C, Tezak N, et al. 2018 Sci. Adv. 4 eaao3603 [43] Li J W, Wu C W and Dai H Y 2011 Chin. Phys. Lett. 28 090302 [44] Chen T, Shen P and Xue Z Y 2020 Phys. Rev. Applied 14 034038 [45] Guan X, Feng Y L, Xue Z Y, Chen G and Jia S 2020 Phys. Rev. A 102 032610 [46] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L and Gadway B 2018 Science 362 929 [47] Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, Lisio C D, Filippis G D, Cataudella V, Santamato E, Marrucci L, Lewenstein M and Massignan P 2017 Nat. Commun. 8 15516 [48] Guo X Y, Ge Z Y, Li H, Wang Z, Zhang Y R, Song P, Xiang Z, Song X, Jin Y, Lu L, Xu K, Zheng D and Fan H 2021 npj Quantum Inf. 7 51 [49] Maffei M, Dauphin A, Cardano F, Lewenstein M and Massignan P 2018 New J. Phys. 20 013023 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|