Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088501    DOI: 10.1088/1674-1056/ac5612
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Characterization of topological phase of superlattices in superconducting circuits

Jianfei Chen(陈健菲)1,2, Chaohua Wu(吴超华)1,2,†, Jingtao Fan(樊景涛)1,2, and Gang Chen(陈刚)1,2,3
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant (winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.
Keywords:  superconducting circuits      topological phase transition      edge state      interface state  
Received:  30 October 2021      Revised:  14 February 2022      Accepted manuscript online:  17 February 2022
PACS:  85.25.-j (Superconducting devices)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034012, 12074232,12125406, and 11804204) and 1331KSC.
Corresponding Authors:  Chaohua Wu     E-mail:  sxwuchua@163.com

Cite this article: 

Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚) Characterization of topological phase of superlattices in superconducting circuits 2022 Chin. Phys. B 31 088501

[1] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[2] Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718 1
[3] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[4] Wang Z, Bao Z, Wu Y, Li Y, Ma C, Cai T, Song Y, Zhang H and Duan L 2021 Chin. Phys. Lett. 38 110303
[5] Li D Y, Chu J, Zheng W, Lan D, Zhao J, Li S X, Tan X S and Yu Y 2021 Chin. Phys. B 30 070308
[6] Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L, Zhao Y, Wang S, Guo S, Qian H, Liang F, Lin J, Xu Y, Guo C, Sun L, Li N, Deng H, Zhu X and Pan J W 2021 Chin. Phys. Lett. 38 100301
[7] Houck A A, Tüeci H E and Koch J 2012 Nat. Phys. 8 292
[8] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[9] Xue Z Y and Hu Y 2021 Adv. Quantum Technol. 4 2100017
[10] He K, Geng X, Huang R, Liu J and Chen W 2021 Chin. Phys. B 30 080304
[11] Jin J, Rossini D, Fazio R, Leib M and Hartmann M J 2013 Phys. Rev. Lett. 110 163605
[12] Ye Y, Ge Z Y, Wu Y, Wang S, Gong M, Zhang Y R, Zhu Q, Yang R, Li S, Liang F, Lin J, Xu Y, Guo C, Sun L, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X and Pan J W 2019 Phys. Rev. Lett. 123 050502
[13] Kounalakis M, Dickel C, Bruno A, Langford N K and Steele G A 2018 npj Quantum Inf. 4 38
[14] Roushan P, et al. 2017 Science 358 1175
[15] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D and Fan H 2018 Phys. Rev. Lett. 120 050507
[16] Orell T, Michailidis A A, Serbyn M and Silveri M 2019 Phys. Rev. B 100 134504
[17] Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H and Wang H 2021 Nat. Phys. 17 234
[18] Gong M, Neto G D, Zha C, Wu Y, Rong H, Ye Y, Li S, Zhu Q, Wang S, Zhao Y, Liang F, Lin J, Xu Y, Peng C Z, Deng H, Bayat A, Zhu X and Pan J W 2021 Phys. Rev. Res. 3 033043
[19] Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas V M, Nemoto K, Munro W J, Huo Y H, Lu C Y, Peng C Z, Zhu X and Pan J W 2021 Science 372 948
[20] Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X and Pan J W 2019 Science 364 753
[21] Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023
[22] Xu K, Sun Z, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H and Wang H 2020 Sci. Adv. 6 eaba4935
[23] Ramasesh V V, Flurin E, Rudner M, Siddiqi I and Yao N Y 2017 Phys. Rev. Lett. 118 130501
[24] Mei F, Chen G, Tian L, Zhu S L and Jia S 2018 Phys. Rev. A 98 012331
[25] Hu K X, Chen C, Qi L, Cui W X, Zhang S and Wang H F 2021 Phys. Rev. A 104 023707
[26] Wu C, Guan X, Fan J, Chen G and Jia S 2021 Phys. Rev. A 104 022601
[27] Niu J, Yan T, Zhou Y, Tao Z, Li X, Liu W, Zhang L, Liu S, Yan Z, Chen Y and Yu D 2021 Sci. Bull. 66 1168
[28] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S and Sun L 2019 Phys. Rev. Lett. 123 080501
[29] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111
[30] Bandyopadhyay S, Bhattacharya U and Dutta A 2019 Phys. Rev. B 100 054305
[31] Vyas V M and Roy D 2021 Phys. Rev. B 103 075441
[32] Bandyopadhyay S and Dutta A 2019 Phys. Rev. B 100 144302
[33] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304
[34] Liu J S, Han Y Z and Liu C S 2020 Chin. Phys. B 29 010302
[35] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[36] Wang X R, Guo C X, Du Q and Kou S P 2020 Chin. Phys. Lett. 37 117303
[37] Midya B and Feng L 2018 Phys. Rev. A 98 043838
[38] Xie D, Gou W and Xiao T 2019 npj Quantum Inf. 5 55
[39] Wang Y, Lu Y H, Gao J, Chang Y J, Tang H and Jin X M 2019 Phys. Rev. B 103 014110
[40] Stefano L 2019 Opt. Lett. 44 2530
[41] Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q and Sun L 2018 Phys. Rev. Appl. 10 054009
[42] Reagor M, Osborn C, Tezak N, et al. 2018 Sci. Adv. 4 eaao3603
[43] Li J W, Wu C W and Dai H Y 2011 Chin. Phys. Lett. 28 090302
[44] Chen T, Shen P and Xue Z Y 2020 Phys. Rev. Applied 14 034038
[45] Guan X, Feng Y L, Xue Z Y, Chen G and Jia S 2020 Phys. Rev. A 102 032610
[46] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L and Gadway B 2018 Science 362 929
[47] Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, Lisio C D, Filippis G D, Cataudella V, Santamato E, Marrucci L, Lewenstein M and Massignan P 2017 Nat. Commun. 8 15516
[48] Guo X Y, Ge Z Y, Li H, Wang Z, Zhang Y R, Song P, Xiang Z, Song X, Jin Y, Lu L, Xu K, Zheng D and Fan H 2021 npj Quantum Inf. 7 51
[49] Maffei M, Dauphin A, Cardano F, Lewenstein M and Massignan P 2018 New J. Phys. 20 013023
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[3] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[4] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[5] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[6] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[7] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[8] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[9] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[12] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[13] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[14] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[15] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
No Suggested Reading articles found!