Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087102    DOI: 10.1088/1674-1056/ac7210
RAPID COMMUNICATION Prev   Next  

Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping

Yong-Huan Wang(王永欢)1,†, Yun Zhang(张云)1,†, Yu Liu(刘瑜)2,†, Xiao Tan(谈笑)1, Ce Ma(马策)1, Yue-Chao Wang(王越超)2, Qiang Zhang(张强)1, Deng-Peng Yuan(袁登鹏)1, Dan Jian(简单)1, Jian Wu(吴健)1, Chao Lai(赖超)1, Xi-Yang Wang(王西洋)1, Xue-Bing Luo(罗学兵)1, Qiu-Yun Chen(陈秋云)1, Wei Feng(冯卫)1, Qin Liu(刘琴)1, Qun-Qing Hao(郝群庆)1, Yi Liu(刘毅)1, Shi-Yong Tan(谭世勇)1, Xie-Gang Zhu(朱燮刚)1,‡, Hai-Feng Song(宋海峰)2,§, and Xin-Chun Lai(赖新春)1,¶
1 Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China;
2 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The hybridization between the localized 4f level (f) with conduction (c) electrons in $\gamma $-Ce upon cooling has been previously revealed in single crystalline thin films experimentally and theoretically, whereas its influence on the $\gamma \to \alpha $ phase transition was not explicitly verified, due to the fact that the phase transition happened in the bulk-layer, leaving the surface in the $\gamma $ phase. Here in our work, we circumvent this issue by investigating the effect of alloying addition of La on Ce, by means of crystal structure, electronic transport and angle resolved photoemission spectroscopy measurements, together with a phenomenological periodic Anderson model and a modified Anderson impurity model. Our current researches indicate that the weakening of f-c hybridization is the major factor in the suppression of $\gamma \to \alpha $ phase transition by La doping. The consistency of our results with the effects of other rare earth and actinide alloying additions on the $\gamma \to \alpha $ phase transition of Ce is also discussed. Our work demonstrates the importance of the interaction between f and c electrons in understanding the unconventional phase transition in Ce, which is intuitive for further researches on other rare earth and actinide metals and alloys with similar phase transition behaviors.
Keywords:  structural phase transition      molecular beam epitaxy      ARPES      f-electron system  
Received:  10 April 2022      Revised:  09 May 2022      Accepted manuscript online:  23 May 2022
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  64.60.-i (General studies of phase transitions)  
  79.60.-i (Photoemission and photoelectron spectra)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1601100 and 2017YFA0303104), the SPC-Lab Research Fund (Grant No. WDZC201901), the Science Challenge Project (Grant Nos. TZ2016004 and TZ2018002), the National Natural Science Foundation of China (Grant Nos. U1630248, 11774320, and 11904334), Special Funds of Institute of Materials (Grant No. TP02201904), and the Development Funds (Grant No. JZX7Y201901SY00900107).
Corresponding Authors:  Xie-Gang Zhu, Hai-Feng Song, Xin-Chun Lai     E-mail:  zhuxiegang@caep.cn;song_haifeng@iapcm.ac.cn;laixinchun@caep.cn

Cite this article: 

Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春) Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping 2022 Chin. Phys. B 31 087102

[1] Koskenmaki D Cand Gschneidner K A 1978 Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, Chapter 4:Cerium (Elsevier) pp. 337-377
[2] Zhu X G, Liu Y, Zhao Y W, Wang Y C, Zhang Y, Lu C, Duan Y, Xie D H, Feng W, Jian D, Wang Y H, Tan S Y, Liu Q, Zhang W, Liu Y, Luo L Z, Luo X B, Chen Q Y, Song H F and Lai X C 2020 npj Quantum Mater. 5 47
[3] Coqblin B and Blandin A 1968 Adv. Phys. 17 281
[4] Ramirez R and Falicov L M 1971 Phys. Rev. B 3 2425
[5] Hirst L L 1974 J. Phys. Chem. Solids 35 1285
[6] Johansson B 1974 Philos. Mag. 30 469
[7] Allen J W and Martin R M 1982 Phys. Rev. Lett. 49 1106
[8] Allen J W and Liu L Z 1992 Phys. Rev. B 46 5047
[9] Chen Q Y, Feng W, Xie D H, Lai X C, Zhu X G and Huang L 2018 Phys. Rev. B 97 155155
[10] Wu Y, Fang Y, Li P Xiao Z, Zheng H, Yuan H Q, Cao C, Yang Y F and Liu Y 2021 Nat. Commun. 12 2520
[11] Drickamer H G 1963 Science 142 1429
[12] Gschneidner K A, Elliott R O and McDonald R R 1962 J. Phys. Chem. Solids 23 1191
[13] Gschneidner K A, Elliott R O and McDonald R R 1962 J. Phys. Chem. Solids 23 1201
[14] Nikolaev A V and Tsvyashchenko A V 2012 Phys.-Uspekhi 55 657
[15] Syassen K and Holzapfel W B 1975 Solid State Commun. 16 533
[16] BaǧcıS, Tütüncü H M, Duman S and Srivastava G P 2010 Phys. Rev. B 81 144507
[17] Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M and Amadon B 2011 Phys. Rev. Lett. 106 065701
[18] Ma C, Dou Z Y, Zhu H Y, Fu G Y, Tan X, Bai B, Zhang P C and Cui Q L 2016 Chin. Phys. B 25 046401
[19] Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q and Feng D L 2017 Phys. Rev. B 96 045107
[20] Chen Q Y, Tan S Y, Feng W, Luo L Z, Zhu X G and Lai X C 2019 Chin. Phys. B 28 077404
[21] Gunnarsson O and Schönhammer K 1983 Phys. Rev. B 28 4315
[22] Gunnarsson O and Schönhammer K 1983 Phys. Rev. Lett. 50 604
[23] Patthey F, Imer J M, Schneider W D, Beck H, Baer Y and Delley B 1990 Phys. Rev. B 42 8864
[24] Buchanan R A, Rast H E and Caspers H H 1966 J. Chem. Phys. 44 4063
[25] Patthey F, Delley B, Schneider W D and Baer Y 1985 Phys. Rev. Lett. 55 1518
[26] Shunk F A 1969 Constitution of binary alloys, second supplement (New York:McGraw-Hill)
[27] Moore K T and van der Laan G 2009 Rev. Mod. Phys. 81 235
[28] Clark D L, Geeson D A and Hanrahan R J 2019 Plutonium Handbook (American Nuclear Society)
[29] Johansson B, Ahuja R, Eriksson O and Wills J M 1995 Phys. Rev. Lett. 75 280
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[7] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[8] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[9] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[10] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[13] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
No Suggested Reading articles found!