Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037305    DOI: 10.1088/1674-1056/acac1b
RAPID COMMUNICATION Prev   Next  

Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures

Yuan Liu(刘源)1,†, Zhongran Liu(刘中然)2,†, Meng Zhang(张蒙)1, Yanqiu Sun(孙艳秋)1, He Tian(田鹤)2,3, and Yanwu Xie(谢燕武)1,4,‡
1 Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, China;
2 Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
3 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Complex oxide heterointerfaces can host a rich of emergent phenomena, and epitaxial growth is usually at the heart of forming these interfaces. Recently, a strong crystalline-orientation-dependent two-dimensional superconductivity was discovered at interfaces between KTaO3 single-crystal substrates and films of other oxides. Unexpectedly, rare of these oxide films was epitaxially grown. Here, we report the existence of superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures, with a superconducting transition temperature of ~ 0.5 K. Meanwhile, no superconductivity was detected in the (001)- and (110)-orientated LaVO3/KTaO3 heterostructures down to 50 mK. Moreover, we find that for the LaVO3/KTaO3(111) interfaces to be conducting, an oxygen-deficient growth environment and a minimum LaVO3 thickness of ~ 0.8 nm (~ 2 unit cells) are needed.
Keywords:  interfaces      superconductivity      epitaxy  
Received:  07 November 2022      Revised:  07 December 2022      Accepted manuscript online:  16 December 2022
PACS:  73.40.-c (Electronic transport in interface structures)  
  74.25.F- (Transport properties)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934016 and 12074334), the Key R&D Program of Zhejiang Province, China (Grant Nos. 2020C01019 and 2021C01002), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Yanwu Xie     E-mail:  ywxie@zju.edu.cn

Cite this article: 

Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武) Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures 2023 Chin. Phys. B 32 037305

[1] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[2] Lorenz M, Ramachandra Rao M S, et al. 2016 J. Phys. D. Appl. Phys. 49 433001
[3] Liu X, Middey S, Cao Y, Kareev M and Chakhalian J 2016 MRS Commun. 6 133
[4] Ohtomo A and Hwang H Y 2004 Nature 427 423
[5] Reyren N, Thiel S, Caviglia A D, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[6] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[7] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van Der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
[8] Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
[9] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
[10] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A and Bozovic I 2008 Nature 455 782
[11] Deng J, Ren T, Ju L, Zhang H, Sun J, Shen B and Xie Y 2020 Sci. China Mater. 63 128
[12] Ju L, Ren T, Li Z, Liu Z, Shi C, Liu Y, Hong S, Wu J, Tian H, Zhou Y and Xie Y 2022 Phys. Rev. B 105 024516
[13] Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepuetz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W and Ramesh R 2016 Nature 530 198
[14] Hua X, Meng F, Huang Z, Li Z, Wang S, Ge B, Xiang Z and Chen X 2022 npj Quantum Mater. 7 97
[15] Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan T M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong D D, Sun J, Zhou H and Bhattacharya A 2021 Science 371 716
[16] Ma Y, Niu J, Xing W, Yao Y, Cai R, Sun J, Xie X C, Lin X and Han W 2020 Chin. Phys. Lett. 37 117401
[17] Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J and Xie Y 2021 Phys. Rev. Lett. 126 26802
[18] Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J and Xie Y 2021 Science 372 721
[19] Sun Y, Liu Y, Hong S, Chen Z, Zhang M and Xie Y 2021 Phys. Rev. Lett. 127 086804
[20] Sun Y, Liu Y, Pan W and Xie Y 2022 J. Phys.: Condens. Matter 34 444004
[21] Zhang G, Wang L, Wang J, Huang G, Yang G, Xue H, Wu Y, Xu J, Song Y, An Z, Zheng C, Shen J, Li J, Chen Y and Li W 2021 arXiv:2111.05650v5
[22] Al-Tawhid A H, Kanter J, Hatefipour M, Kumah D P, Shabani J and Ahadi K 2022 J. Electron. Mater. 51 6305
[23] Bordet P, Chaillout C, Marezio M, Huang Q, Santoro A, Cheong S W, Takagi H, Oglesby C S and Batlogg B 1993 J. Solid State Chem. 106 253
[24] Jana A, Choudhary R J and Phase D M 2018 Phys. Rev. B 98 075124
[25] Wadehra N, Tomar R, Varma R M, Gopal R K, Singh Y, Dattagupta S and Chakraverty S 2020 Nat. Commun. 11 874
[26] Goyal S, Wadehra N and Chakraverty S 2020 Adv. Mater. Interfaces 7 2000646
[27] Wemple S H 1965 Phys. Rev. 137 A1575
[28] Ren T, Li M, Sun X, Ju L, Liu Y, Hong S, Sun Y, Tao Q, Zhou Y, Xu Z A and Xie Y 2022 Sci. Adv. 8 eabn4273
[29] Tinkham M 2004 Introduction to Superconductivity (Courier Corporation) p. 324
[30] Ruggiero S T, Barbee T W and Beasley M R 1980 Phys. Rev. Lett. 45 1299
[31] Nakagawa Y, Saito Y, Nojima T, Inumaru K, Yamanaka S, Kasahara Y and Iwasa Y 2018 Phys. Rev. B 98 064512
[32] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[33] Liu Z Q, Li C J, Lü W M, Huang X H, Huang Z, Zeng S W, Qiu X P, Huang L S, Annadi A, Chen J S, Coey J M D, Venkatesan T and Ariando 2013 Phys. Rev. X 3 021010
[34] Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
[35] Reinle-Schmitt M L, Cancellieri C, Li D, Fontaine D, Medarde M, Pomjakushina E, Schneider C W, Gariglio S, Ghosez P, Triscone J M and Willmott P R 2012 Nat. Commun. 3 932
[36] Zhang M, Chen Z, Mao B, Li Q, Bo H, Ren T, He P, Liu Z and Xie Y 2018 Phys. Rev. Mater. 2 065002
[37] Zhang M, Du K, Ren T, Tian H, Zhang Z, Hwang H Y and Xie Y 2019 Nat. Commun. 10 4026
[38] Yu L and Zunger A 2014 Nat. Commun. 5 5118
[39] Chen Z, Chen X, Mao B, Li Q, Zhang M, Bo H, Liu Z, Tian H, Zhang Z and Xie Y 2018 Adv. Mater. Interfaces 5 1801216
[40] Chen Z, Zhang M, Ren T and Xie Y 2019 J. Phys.: Condens. Matter 31 505002
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[4] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[7] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[8] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[9] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[13] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[14] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!