Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 128504    DOI: 10.1088/1674-1056/ac6333
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Temperature dependence of spin pumping in YIG/NiOx/W multilayer

Lijun Ni(倪丽君)1, Wenqiang Wang(王文强)1, Lichuan Jin(金立川)2, Jiandong Ye(叶建东)1, Hehe Gong(巩贺贺)1, Xiang Zhan(战翔)3, Zhendong Chen(陈振东)4, Longlong Zhang(张龙龙)1, Xingze Dai(代兴泽)1, Yao Li(黎遥)1, Rong Zhang(张荣)1, Yi Yang(杨燚)1, Huaiwu Zhang(张怀武)2, Ronghua Liu(刘荣华)3, Lina Chen(陈丽娜)5,†, and Yongbing Xu(徐永兵)1,6,‡
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China;
4 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
5 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
6 York-Nanjing Joint Centre for Spintronics and NanoEngineering, Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom
Abstract  We report the temperature dependence of the spin pumping effect for Y3Fe5O12 (YIG, 0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO = 0 nm, 1 nm, 2 nm, and 10 nm) heterostructures. All samples exhibit a strong temperature-dependent inverse spin Hall effect (ISHE) signal Ic and sensitivity to the NiO layer thickness. We observe a dramatic decrease of Ic with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W. In contrast to the noticeable enhancement in YIG/NiO (tNiO ≈ 1-2 nm)/Pt, the suppression of spin transport may be closely related to the specific interface-dependent spin scattering, spin memory loss, and spin conductance at the NiO/W interface. Besides, the Ic of YIG/NiO/W exhibits a maximum near the TN of the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.
Keywords:  spin pumping effect      spin transport      charge current Ic      linewidth Δ H      temperature dependence  
Received:  05 January 2022      Revised:  15 March 2022      Accepted manuscript online:  01 April 2022
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  72.25.Mk (Spin transport through interfaces)  
  32.30.Dx (Magnetic resonance spectra)  
Fund: We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 11774160, 61427812, 61805116, 12004171, 61774081, and 62171096), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20192006), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 51827802), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20180056 and BK20200307), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20200309), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the Scientific Foundation of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY220164), and the State Key R&D Project of Guangdong, China (Grant No. 2020B010174002).
Corresponding Authors:  Lina Chen, Yongbing Xu     E-mail:  chenlina@njupt.edu.cn;ybxu@nju.edu.cn

Cite this article: 

Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵) Temperature dependence of spin pumping in YIG/NiOx/W multilayer 2022 Chin. Phys. B 31 128504

[1] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[2] Tserkovnyak Y, Brataas A, Bauer G E W and Halperin B I 2005 Rev. Mod. Phys. 77 1375
[3] Kovalev A A, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224424
[4] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
[5] Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, Teresa J M D, Magén C and Fert A 2013 Nat. Commun. 4 2944
[6] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2013 Phys. Rev. B 88 100406(R)
[7] Qiu Z, Li J, Hou D, Arenholz E, N'Diaye A T, Tan A, Uchida K I, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q and Saitoh E 2016 Nat. Commun. 7 12670
[8] Kikkawa T, Shen K, Flebus B, Duine R A, Uchida K, Qiu Z Y, Bauer G E W and Saitoh E 2016 Phys. Rev. Lett. 117 207203
[9] Lin W W, Chen K, Zhang S F and Chien C L 2016 Phys. Rev. Lett. 116 186601
[10] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 122 077201
[11] Moriyama T, Takei S, Nagata M, Yoshimura Y, Matsuzaki N, Terashima T, Tserkovnyak Y and Ono T 2015 Appl. Phys. Lett. 106 162406
[12] Wang H L, Du C H, Hammel P C and Yang F Y 2015 Phys. Rev. B 91 220410(R)
[13] Frangou L, Oyarzún S, Auffret S, Vila L, Gambarelli S and Baltz V 2016 Phys. Rev. Lett. 116 077203
[14] Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A and Kläui M 2018 Nature 561 222
[15] Hou D Z, Qiu Z Y and Saitoh E 2019 NPG Asia Mater. 11 35
[16] Palmberg P W, DeWames R E and Vredevoe L A 1968 Phys. Rev. Lett. 21 682
[17] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2010 Nat. Photon. 5 31
[18] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 113 097202
[19] Jin L C, Jia K C, Zhang D N, Liu B, Meng H, Tang X L, Zhong Z Y, Zhang H W 2019 ACS Appl. Mater. Interfaces 11 35458
[22] Du C H, Wang H L, Yang F Y and Hammel P C 2014 Phys. Rev. Appl. 1 044004
[23] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[24] Alders D, Tjeng L H, Voogt F C, Hibma T, Sawatzky G A, Chen C T, Vogel J, Sacchi M and Iacobucci S 1998 Phys. Rev. B 57 11623
[25] Ambrose T and Chien C L 1996 Phys. Rev. Lett. 76 1743
[26] Liu Z Y and Adenwalla S 2003 J. Appl. Phys. 94 1105
[27] Baruth A, Adenwalla S 2008 Phys. Rev. B 78 174407
[28] Cheng Y, Zarzuela R, Brangham J T, Lee A J, White S, Hammel P C, Tserkovnyak Y and Yang F Y 2019 Phys. Rev. B 99 060405
[29] Ohnuma Y, Adachi H, Saitoh E and Maekawa S 2014 Phys. Rev. B 89 174417
[30] Takei S, Moriyama T, Ono T and Tserkovnyak Y 2015 Phys. Rev. B 92 020409
[31] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201
[32] Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M and Hillebrands B 2015 Phys. Rev. B 91 134407
[33] Okuno T, Taniguchi T, Kim S, Baek S C, Park B, Moriyama T, Kim K and Ono T 2016 Jpn. J. Appl. Phys. 55 080308
[34] Shigematsu E, Ando Y, Ohshima R, Dushenko S, Higuchi Y, Shinjo T, Bardeleben H J v and Shiraishi M 2016 Appl. Phys. Express 9 053002
[35] Seiden P E 1964 Phys. Rev. 133 A728
[36] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Appl. Phys. Lett. 104 202405
[37] Platow W, Anisimov A N, Dunifer G L, Farle M and Baberschke K 1998 Phys. Rev. B 58 5611
[38] Martín-Rio S, Pomar A, Balcells Ll, Bozzo B, Frontera C and Martínez B 2020 J. Magn. Magn. Mater. 500 166319
[1] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[2] Influence of thickness on current-induced magnetization switching in L10-FePt single layer
Shi-Qi Zheng(郑诗琪), Kang-Kang Meng(孟康康), Zhen-Guo Fu(付振国), Ji-Kun Chen(陈吉堃), Jun Miao(苗君), Xiao-Guang Xu(徐晓光), and Yong Jiang(姜勇). Chin. Phys. B, 2021, 30(10): 107101.
[3] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[4] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[5] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[6] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[7] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[8] Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method
Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(6): 068103.
[9] Spin transport in a chain of polygonal quantum rings with Dresselhaus spin-orbit coupling
Han-Zhao Tang(唐翰昭), Xiao-Teng Yao(要晓腾), Jian-Jun Liu(刘建军). Chin. Phys. B, 2017, 26(11): 117203.
[10] Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model
Ya-Bin Sun(孙亚宾), Jun Fu(付军), Yu-Dong Wang(王玉东), Wei Zhou(周卫), Wei Zhang(张伟), and Zhi-Hong Liu(刘志弘). Chin. Phys. B, 2016, 25(4): 048501.
[11] Spin transport properties of a Dresselhaus-polygonal quantum ring
Tang Han-Zhao (唐翰昭), Zhai Li-Xue (翟利学), Shen Man (沈曼), Liu Jian-Jun (刘建军). Chin. Phys. B, 2015, 24(3): 030303.
[12] Effect of combined platinum and electron on the temperature dependence of forward voltage in fast recovery diode
Jia Yun-Peng (贾云鹏), Zhao Bao (赵豹), Yang Fei (杨霏), Wu Yu (吴郁), Zhou Xuan (周璇), Li Zhe (李哲), Tan Jian (谭健). Chin. Phys. B, 2015, 24(12): 126104.
[13] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[14] Temperature dependence of the photothermal laser cooling efficiency for a micro-cantilever
Ding Li-Ping (丁丽萍), Mao Tian-Hua (毛添华), Fu Hao (付号), Cao Geng-Yu (曹更玉). Chin. Phys. B, 2014, 23(10): 107801.
[15] Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain
Hou Hai-Ping (侯海平), Xie Yue-E (谢月娥), Chen Yuan-Ping (陈元平), Ouyang Tao (欧阳滔), Ge Qing-Xia (葛青霞), Zhong Jian-Xin (钟建新). Chin. Phys. B, 2013, 22(8): 087303.
No Suggested Reading articles found!