Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君)1, Wenqiang Wang(王文强)1, Lichuan Jin(金立川)2, Jiandong Ye(叶建东)1, Hehe Gong(巩贺贺)1, Xiang Zhan(战翔)3, Zhendong Chen(陈振东)4, Longlong Zhang(张龙龙)1, Xingze Dai(代兴泽)1, Yao Li(黎遥)1, Rong Zhang(张荣)1, Yi Yang(杨燚)1, Huaiwu Zhang(张怀武)2, Ronghua Liu(刘荣华)3, Lina Chen(陈丽娜)5,†, and Yongbing Xu(徐永兵)1,6,‡
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 3 Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China; 4 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; 5 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 6 York-Nanjing Joint Centre for Spintronics and NanoEngineering, Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom
Abstract We report the temperature dependence of the spin pumping effect for Y3Fe5O12 (YIG, 0.9 μm)/NiO (tNiO)/W (6 nm) (tNiO = 0 nm, 1 nm, 2 nm, and 10 nm) heterostructures. All samples exhibit a strong temperature-dependent inverse spin Hall effect (ISHE) signal Ic and sensitivity to the NiO layer thickness. We observe a dramatic decrease of Ic with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W. In contrast to the noticeable enhancement in YIG/NiO (tNiO ≈ 1-2 nm)/Pt, the suppression of spin transport may be closely related to the specific interface-dependent spin scattering, spin memory loss, and spin conductance at the NiO/W interface. Besides, the Ic of YIG/NiO/W exhibits a maximum near the TN of the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.
Fund: We acknowledge support from the National Natural Science Foundation of China (Grant Nos. 11774160, 61427812, 61805116, 12004171, 61774081, and 62171096), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20192006), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 51827802), the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20180056 and BK20200307), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20200309), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the Scientific Foundation of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY220164), and the State Key R&D Project of Guangdong, China (Grant No. 2020B010174002).
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵) Temperature dependence of spin pumping in YIG/NiOx/W multilayer 2022 Chin. Phys. B 31 128504
[1] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys.76 323 [2] Tserkovnyak Y, Brataas A, Bauer G E W and Halperin B I 2005 Rev. Mod. Phys.77 1375 [3] Kovalev A A, Brataas A and Bauer G E W 2002 Phys. Rev. B66 224424 [4] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett.88 117601 [5] Sánchez J C R, Vila L, Desfonds G, Gambarelli S, Attané J P, Teresa J M D, Magén C and Fert A 2013 Nat. Commun.4 2944 [6] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2013 Phys. Rev. B88 100406(R) [7] Qiu Z, Li J, Hou D, Arenholz E, N'Diaye A T, Tan A, Uchida K I, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q and Saitoh E 2016 Nat. Commun.7 12670 [8] Kikkawa T, Shen K, Flebus B, Duine R A, Uchida K, Qiu Z Y, Bauer G E W and Saitoh E 2016 Phys. Rev. Lett.117 207203 [9] Lin W W, Chen K, Zhang S F and Chien C L 2016 Phys. Rev. Lett.116 186601 [10] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett.122 077201 [11] Moriyama T, Takei S, Nagata M, Yoshimura Y, Matsuzaki N, Terashima T, Tserkovnyak Y and Ono T 2015 Appl. Phys. Lett.106 162406 [12] Wang H L, Du C H, Hammel P C and Yang F Y 2015 Phys. Rev. B91 220410(R) [13] Frangou L, Oyarzún S, Auffret S, Vila L, Gambarelli S and Baltz V 2016 Phys. Rev. Lett.116 077203 [14] Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A and Kläui M 2018 Nature561 222 [15] Hou D Z, Qiu Z Y and Saitoh E 2019 NPG Asia Mater.11 35 [16] Palmberg P W, DeWames R E and Vredevoe L A 1968 Phys. Rev. Lett.21 682 [17] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2010 Nat. Photon.5 31 [18] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Phys. Rev. Lett.113 097202 [19] Jin L C, Jia K C, Zhang D N, Liu B, Meng H, Tang X L, Zhong Z Y, Zhang H W 2019 ACS Appl. Mater. Interfaces11 35458 [22] Du C H, Wang H L, Yang F Y and Hammel P C 2014 Phys. Rev. Appl.1 044004 [23] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science336 555 [24] Alders D, Tjeng L H, Voogt F C, Hibma T, Sawatzky G A, Chen C T, Vogel J, Sacchi M and Iacobucci S 1998 Phys. Rev. B57 11623 [25] Ambrose T and Chien C L 1996 Phys. Rev. Lett.76 1743 [26] Liu Z Y and Adenwalla S 2003 J. Appl. Phys.94 1105 [27] Baruth A, Adenwalla S 2008 Phys. Rev. B78 174407 [28] Cheng Y, Zarzuela R, Brangham J T, Lee A J, White S, Hammel P C, Tserkovnyak Y and Yang F Y 2019 Phys. Rev. B99 060405 [29] Ohnuma Y, Adachi H, Saitoh E and Maekawa S 2014 Phys. Rev. B89 174417 [30] Takei S, Moriyama T, Ono T and Tserkovnyak Y 2015 Phys. Rev. B92 020409 [31] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett.112 197201 [32] Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M and Hillebrands B 2015 Phys. Rev. B91 134407 [33] Okuno T, Taniguchi T, Kim S, Baek S C, Park B, Moriyama T, Kim K and Ono T 2016 Jpn. J. Appl. Phys.55 080308 [34] Shigematsu E, Ando Y, Ohshima R, Dushenko S, Higuchi Y, Shinjo T, Bardeleben H J v and Shiraishi M 2016 Appl. Phys. Express9 053002 [35] Seiden P E 1964 Phys. Rev. 133 A728 [36] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Appl. Phys. Lett.104 202405 [37] Platow W, Anisimov A N, Dunifer G L, Farle M and Baberschke K 1998 Phys. Rev. B58 5611 [38] Martín-Rio S, Pomar A, Balcells Ll, Bozzo B, Frontera C and Martínez B 2020 J. Magn. Magn. Mater.500 166319
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.