Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028801    DOI: 10.1088/1674-1056/ac9b3a

Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell

Caixia Zhang(张彩霞)1,2,†, Yaling Li(李雅玲)1, Beibei Lin(林蓓蓓)1, Jianlong Tang(唐建龙)1, Quanzhen Sun(孙全震)1, Weihao Xie(谢暐昊)1, Hui Deng(邓辉)1, Qiao Zheng(郑巧)1, and Shuying Cheng(程树英)1,2,‡
1 College of Physics and Information Engineering, and Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China;
2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164, China
Abstract  The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn$_{1-x}$Mg$_{x}$O (ZnMgO) and Zn$_{1-x}$Sn$_{x}$O (ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator (SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/Zn$X$O ($X={\rm Mg/Sn}$) heterojunction devices with different Mg/(Zn$+$Mg) and Sn/(Zn$+$Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets (CBO) on the device performance. The simulation results show that the CZTSSe/Zn$X$O ($X={\rm Mg/Sn}$) devices achieve optimal performance with a small "spike" band or "flat" band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn$_{0.9}$Mg$_{0.1}$O and Zn$_{0.8}$Sn$_{0.2}$O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn$_{0.9}$Mg$_{0.1}$O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.
Keywords:  ZnMgO/ZnSnO      numerical simulation      Cd-free buffer      heterojunction interface  
Received:  02 September 2022      Revised:  12 October 2022      Accepted manuscript online:  19 October 2022
PACS:  88.40.jn (Thin film Cu-based I-III-VI2 solar cells)  
  88.40.fc (Modeling and analysis)  
  88.40.ff (Performance testing)  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074037 and 52002073) and the Fund from the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ124). The authors also thank Testing Center of Fuzhou University for facility access.
Corresponding Authors:  Caixia Zhang, Shuying Cheng     E-mail:;

Cite this article: 

Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英) Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell 2023 Chin. Phys. B 32 028801

[1] Gang M G, Shin S W, Hong C W, Gurav K V, Gwak J, Yun J H, Lee J Y and Kim J H 2016 Green Chem. 18 700
[2] Gong Y, Zhang Y, Zhu Q, Zhou Y, Qiu R, Niu C, Yan W, Huang W and Xin H 2021 Energy Environ. Sci. 14 2369
[3] Zhou Y L, Zhou W H, Li M, Du Y F and Wu S X 2011 J. Phys. Chem.C 115 19632
[4] Hauschild D, Mezher M, Schnabel T, Spiering S, Kogler W, Carter J, Blum M, Yang W, Ahlswede E, Heske C and Weinhardt L 2019 ACS Appl. Energy Mater. 2 4098
[5] Htay M T, Hashimoto Y, Momose N, Sasaki K, Ishiguchi H, Igarashi S, Sakurai K and Ito K 2011 Jpn. J. Appl. Phys. 50 032301
[6] Jeong H, Nandi R, Cho J Y, Pawar P S, Lee H S, Neerugatti K E, Kim J H and Heo J 2021 Prog. Photovoltaics Res. Appl. 29 1057
[7] Hironiwa D, Matsuo N, Sakai N, Katou T, Sugimoto H, Chantana J, Tang Z and Minemoto T 2014 Jpn. J. Appl. Phys. 53 106502
[8] Lee J, Enkhbat T, Han G, Sharif M H, Enkhbayar E, Yoo H, Kim J H, Kim S and Kim J 2020 Nano Energy 78 105206
[9] Ke Y, Lany S, Berry J J, Perkins J D, Parilla P A, Zakutayev A, Ohno T, O'Hayre R and Ginley D S 2014 Adv. Funct. Mater. 24 2875
[10] Cui X, Sun K, Huang J, Lee C Y, Yan C, Sun H, Zhang Y, Liu F, Hossain M A, Zakaria Y, Wong L H, Green M, Hoex B and Hao X 2018 Chem. Mater. 30 7860
[11] Si X, Liu Y, Lei W, Xu J, Du W, Lin J, Zhou T and Zheng L 2016 Mater. Des. 93 128
[12] Kapilashrami M, Kronawitter C X, Torndahl T, Lindahl J, Hultqvist A, Wang W C, Chang C L, Mao S S and Guo J 2012 Phys. Chem. Chem. Phys. 14 10154
[13] Hironiwa D, Matsuo N, Chantana J, Sakai N, Kato T, Sugimoto H and Minemoto T 2015 Phys. Status. Solidi. A 212 2766
[14] An H R, Ahn H J and Park J W 2015 Ceram. Int. 41 2253
[15] Burgelman M, Nollet P and Degrave S 2000 Thin Solid Films 361 527
[16] Chaurasiya R, Gupta G K and Dixit A 2021 J. Phys. Chem. C 125 4355
[17] Nishat S S, Hossain M J, Mullick F E, Kabir A, Chowdhury S, Islam S and Hossain M 2021 J. Phys. Chem. C 125 13158
[18] Mora-Herrera D, Pal M and Santos-Cruz J 2021 Sol. Energy 220 316
[19] Djinkwi Wanda M, Ouédraogo S, Tchoffo F, Zougmoré F and Ndjaka J M B 2016 Int. J. Photoenergy 28 1
[20] Simya O K, Mahaboobbatcha A and Balachander K 2015 Superlattices Microstruct. 82 248
[21] Najm A S, Chelvanathan P, Tiong S K, Ferdaous M T, Shahahmadi S A, Yusoff Y, Sopian K and Amin N 2021 Coatings 11 52
[22] Zhang C, Yang Z, Deng H, Yan Q, Xie W, Sun Q, Sheng X and Cheng S 2021 J. Phys. Chem. C 125 16746
[23] Nisika, Kaur K and Kumar M 2020 J. Mater. Chem. A 8 21547
[24] Lee S, Kim S, Shin S, Jin Z and Min Y S 2018 J. Ind. Eng. Chem. 58 328
[25] Saadat M, Amiri O and Rahdar A 2019 Sol. Energy 189 464
[26] Crovetto A and Hansen O 2017 Sol. Energy Mater. Sol. Cells 169 177
[27] Dinakaran S, Meher S R and Swarnavalli G C J 2019 Appl. Phys. A 125 1
[28] Narayanan N and Deepak N K 2016 Optik 127 9821
[29] Zhang Y, Jiang D, Sui Y, Wu Y, Wang Z, Yang L, Wang F, Lv S and Yao B 2018 Ceram. Int. 44 15249
[30] Wang L, Luo M, Qin S, Liu X, Chen J, Yang B, Leng M, Xue D J, Zhou Y, Gao L, Song H and Tang J 2015 Appl. Phys. Lett. 107 143902
[31] Leever B J, Bailey C A, Marks T J, Hersam M C and Durstock M F 2012 Adv. Energy Mater. 2 120
[32] Hack J, Luderer C, Reichel C, Opila R and Bivour M 2021 Sol. Energy Mater. Sol. Cells 219 110794
[33] Garain R, Basak A and Singh U P 2021 Mater. Today:. Proc. 39 1833
[34] Yun J H, Kumar M D, Patel M, Park Y C, Byung Soo K and Kim J 2016 Mater. Sci. Semicond. Process. 48 95
[35] Gamal N, Sedky S H, Shaker A and Fedawy M 2021 Optik 242 167306
[36] Ghebouli M A, Ghebouli B, Larbi R, Chihi T and Fatmi M 2021 Optik 241 166203
[37] Asaduzzaman M, Bahar A N, Masum M M and Hasan M M 2017 Alexandria Eng. J. 56 225
[38] Kanevce A, Repins I and Wei S H 2015 Sol. Energy Mater. Sol. Cells 133 119
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[3] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[4] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[5] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[6] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[7] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[8] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[9] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[10] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[11] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[14] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[15] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
No Suggested Reading articles found!