|
|
Selective formation of ultrathin PbSe on Ag(111) |
Jing Wang(王静)1, Meysam Bagheri Tagani2, Li Zhang(张力)1,†, Yu Xia(夏雨)1, Qilong Wu(吴奇龙)1, Bo Li(黎博)1, Qiwei Tian(田麒玮)1, Yuan Tian(田园)1, Long-Jing Yin(殷隆晶)1, Lijie Zhang(张利杰)1, and Zhihui Qin(秦志辉)1,‡ |
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education&Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran |
|
|
Abstract Two-dimensional (2D) semiconductors, such as lead selenide (PbSe), locate at the key position of next-generation devices. However, the ultrathin PbSe is still rarely reported experimentally, particularly on metal substrates. Here, we report the ultrathin PbSe synthesized via sequential molecular beam epitaxy on Ag(111). The scanning tunneling microscopy is used to resolve the atomic structure and confirms the selective formation of ultrathin PbSe through the reaction between Ag5Se2 and Pb, as further evidenced by the theoretical calculation. It is also found that the increased accumulation of Pb leads to the improved quality of PbSe with larger and more uniform films. The detailed analysis demonstrates the bilayer structure of synthesized PbSe, which could be deemed to achieve the 2D limit. The differential conductance spectrum reveals a metallic feature of the PbSe film, indicating a certain interaction between PbSe and Ag(111). Moreover, the moiré pattern originated from the lattice mismatch between PbSe and Ag(111) is observed, and this moiré system provides the opportunity for studying physics under periodical modulation and for device applications. Our work illustrates a pathway to selectively synthesize ultrathin PbSe on metal surfaces and suggests a 2D experimental platform to explore PbSe-based opto-electronic and thermoelectric phenomena.
|
Received: 07 May 2022
Revised: 29 May 2022
Accepted manuscript online: 14 June 2022
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174096, 51772087, 51972106, 11904094, 11804089 and 12174095), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ50073 and 2021JJ20026). The authors acknowledge the financial support from the Fundamental Research Funds for the Central Universities of China. |
Corresponding Authors:
Li Zhang, Zhihui Qin
E-mail: li_zhang@hnu.edu.cn;zhqin@hnu.edu.cn
|
Cite this article:
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉) Selective formation of ultrathin PbSe on Ag(111) 2022 Chin. Phys. B 31 096801
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147 [3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699 [4] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Chem. Soc. Rev. 44 2757 [5] Pietryga J M, Werder D J, Williams D J, Casson J L, Schaller R D, Klimov V I and Hollingsworth J A 2008 J. Am. Chem. Soc. 130 4879 [6] Nozik A J 2008 Chem. Phys. Lett. 457 3 [7] Chen T R, Fan C, Zhou W C, Zou X M, Xu X, Wang S Y, Wan Q and Zhang Q L 2019 Appl. Phys. Express 12 055005 [8] Parker D and Singh D J 2010 Phys. Rev. B 82 035204 [9] You L, Liu Y, Li X, Nan P, Ge B, Jiang Y, Luo P, Pan S, Pei Y, Zhang W, Snyder G J, Yang J, Zhang J and Luo J 2018 Energy Environ. Sci. 11 1848 [10] Tang S, Bai S, Wu M, Luo D, Wang D, Yang S and Zhao L D 2022 Mater. Today Energy 23 100914 [11] Schaller R D and Klimov V I 2004 Phys. Rev. Lett. 92 186601 [12] Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse H W and Law M 2010 Nano Lett. 10 1960 [13] Evers W H, Schins J M, Aerts M, Kulkarni A, Capiod P, Berthe M, Grandidier B, Delerue C, van der Zant H S J, van Overbeek C, Peters J L, Vanmaekelbergh D and Siebbeles L D A 2015 Nat. Commun. 6 8195 [14] Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins J C, Allan G and Hens Z 2007 Chem. Mater. 19 6101 [15] Beard M C, Midgett A G, Hanna M C, Luther J M, Hughes B K and Nozik A J 2010 Nano Lett. 10 3019 [16] Semonin O E, Luther J M, Choi S, Chen H Y, Gao J B, Nozik A J and Beard M C 2011 Science 334 1530 [17] Ul Haq B, AlFaify S, Ahmed R, Laref A, Mahmood Q and Algrafy E 2020 Appl. Surf. Sci. 525 146521 [18] Wrasse E O and Schmidt T M 2014 Nano Lett. 14 5717 [19] Liu J, Hsieh T H, Wei P, Duan W, Moodera J and Fu L 2014 Nat. Mater. 13 178 [20] Zhao F, Ma J, Weng B, Li D, Bi G, Chen A, Xu J and Shi Z 2010 J. Cryst. Growth 312 2695 [21] Strecker B N, McCann P J, Fang X M, Hauenstein R J, O'steen M and Johnson M B 1997 J. Electron. Mater. 26 444 [22] Gannon R N, Choffel M M, Blackwood H R, Wolff N, Lotnyk A, Kienle L and Johnson D C 2022 Z. Anorg. Allg. Chem. e202200015 [23] Moore D B, Beekman M, Disch S, Zschack P, Häusler I, Neumann W and Johnson D C 2013 Chem. Mater. 25 2404 [24] Grosse C, Alemayehu M B, Falmbigl M, Mogilatenko A, Chiatti O, Johnson D C and Fischer S F 2016 Sci. Rep. 6 33457 [25] Cordova D L M, Fender S S, Hooshmand M S, Buchanan M R, Davis J, Kam T M, Gannon R N, Fischer R, Lu P, Hanken B E, Asta M and Johnson D C 2020 Chem. Mater. 32 7992 [26] Cordova D L M, Kam T M, Fender S S, Tsai Y H and Johnson D C 2019 Phys. Status Solidi A 216 1800896 [27] Galle T, Samadi Khoshkhoo M, Martin-Garcia B, Meerbach C, Sayevich V, Koitzsch A, Lesnyak V and Eychmüller A 2019 Chem. Mater. 31 3803 [28] Shao Z, Zheng F, Zhang Z, Sun H, Li S, Yuan H, Li Q, Zhang P and Pan M 2019 ACS Nano 13 2615 [29] Mane R S and Lokhande C D 2000 Mater. Chem. Phys. 65 1 [30] Kim D K, Vemulkar T R, Oh S J, Koh W K, Murray C B and Kagan C R 2011 ACS Nano 5 3230 [31] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [33] Lu J, Song S, Zhang S, Song Y, Cao Y, Wang Z, Huang L, Lu H, Zhang Y Y, Pantelides S T, Du S, Lin X and Gao H J 2022 Nano Res. 15 6730 [34] Lu J, Gao L, Song S, Li H, Niu G, Chen H, Qian T, Ding H, Lin X, Du S and Gao H J 2021 ACS Appl. Nano Mater. 4 8845 [35] Li X B, Guo P, Zhang Y N, Peng R F, Zhang H and Liu L M 2015 J. Mater. Chem. C 3 6284 [36] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies, 1st edn. [37] Carnevali V, Marcantoni S and Peressi M 2021 Comp. Mater. Sci. 196 110516 [38] Wu Q, Bagheri Tagani M, Zhang L, Wang J, Xia Y, Zhang L, Xie S Y, Tian Y, Yin L J, Zhang W, Rudenko A N, Wee A T S, Wong P K J and Qin Z 2022 ACS Nano 16 6541 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|