Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 096801    DOI: 10.1088/1674-1056/ac7867
RAPID COMMUNICATION Prev   Next  

Selective formation of ultrathin PbSe on Ag(111)

Jing Wang(王静)1, Meysam Bagheri Tagani2, Li Zhang(张力)1,†, Yu Xia(夏雨)1, Qilong Wu(吴奇龙)1, Bo Li(黎博)1, Qiwei Tian(田麒玮)1, Yuan Tian(田园)1, Long-Jing Yin(殷隆晶)1, Lijie Zhang(张利杰)1, and Zhihui Qin(秦志辉)1,‡
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education&Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran
Abstract  Two-dimensional (2D) semiconductors, such as lead selenide (PbSe), locate at the key position of next-generation devices. However, the ultrathin PbSe is still rarely reported experimentally, particularly on metal substrates. Here, we report the ultrathin PbSe synthesized via sequential molecular beam epitaxy on Ag(111). The scanning tunneling microscopy is used to resolve the atomic structure and confirms the selective formation of ultrathin PbSe through the reaction between Ag5Se2 and Pb, as further evidenced by the theoretical calculation. It is also found that the increased accumulation of Pb leads to the improved quality of PbSe with larger and more uniform films. The detailed analysis demonstrates the bilayer structure of synthesized PbSe, which could be deemed to achieve the 2D limit. The differential conductance spectrum reveals a metallic feature of the PbSe film, indicating a certain interaction between PbSe and Ag(111). Moreover, the moiré pattern originated from the lattice mismatch between PbSe and Ag(111) is observed, and this moiré system provides the opportunity for studying physics under periodical modulation and for device applications. Our work illustrates a pathway to selectively synthesize ultrathin PbSe on metal surfaces and suggests a 2D experimental platform to explore PbSe-based opto-electronic and thermoelectric phenomena.
Keywords:  ultrathin lead selenide (PbSe)      scanning tunneling microscopy/spectroscopy (STM/STS)      molecular beam epitaxy  
Received:  07 May 2022      Revised:  29 May 2022      Accepted manuscript online:  14 June 2022
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.55.-a (Thin film structure and morphology)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174096, 51772087, 51972106, 11904094, 11804089 and 12174095), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ50073 and 2021JJ20026). The authors acknowledge the financial support from the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Li Zhang, Zhihui Qin     E-mail:  li_zhang@hnu.edu.cn;zhqin@hnu.edu.cn

Cite this article: 

Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉) Selective formation of ultrathin PbSe on Ag(111) 2022 Chin. Phys. B 31 096801

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7 699
[4] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Chem. Soc. Rev. 44 2757
[5] Pietryga J M, Werder D J, Williams D J, Casson J L, Schaller R D, Klimov V I and Hollingsworth J A 2008 J. Am. Chem. Soc. 130 4879
[6] Nozik A J 2008 Chem. Phys. Lett. 457 3
[7] Chen T R, Fan C, Zhou W C, Zou X M, Xu X, Wang S Y, Wan Q and Zhang Q L 2019 Appl. Phys. Express 12 055005
[8] Parker D and Singh D J 2010 Phys. Rev. B 82 035204
[9] You L, Liu Y, Li X, Nan P, Ge B, Jiang Y, Luo P, Pan S, Pei Y, Zhang W, Snyder G J, Yang J, Zhang J and Luo J 2018 Energy Environ. Sci. 11 1848
[10] Tang S, Bai S, Wu M, Luo D, Wang D, Yang S and Zhao L D 2022 Mater. Today Energy 23 100914
[11] Schaller R D and Klimov V I 2004 Phys. Rev. Lett. 92 186601
[12] Liu Y, Gibbs M, Puthussery J, Gaik S, Ihly R, Hillhouse H W and Law M 2010 Nano Lett. 10 1960
[13] Evers W H, Schins J M, Aerts M, Kulkarni A, Capiod P, Berthe M, Grandidier B, Delerue C, van der Zant H S J, van Overbeek C, Peters J L, Vanmaekelbergh D and Siebbeles L D A 2015 Nat. Commun. 6 8195
[14] Moreels I, Lambert K, De Muynck D, Vanhaecke F, Poelman D, Martins J C, Allan G and Hens Z 2007 Chem. Mater. 19 6101
[15] Beard M C, Midgett A G, Hanna M C, Luther J M, Hughes B K and Nozik A J 2010 Nano Lett. 10 3019
[16] Semonin O E, Luther J M, Choi S, Chen H Y, Gao J B, Nozik A J and Beard M C 2011 Science 334 1530
[17] Ul Haq B, AlFaify S, Ahmed R, Laref A, Mahmood Q and Algrafy E 2020 Appl. Surf. Sci. 525 146521
[18] Wrasse E O and Schmidt T M 2014 Nano Lett. 14 5717
[19] Liu J, Hsieh T H, Wei P, Duan W, Moodera J and Fu L 2014 Nat. Mater. 13 178
[20] Zhao F, Ma J, Weng B, Li D, Bi G, Chen A, Xu J and Shi Z 2010 J. Cryst. Growth 312 2695
[21] Strecker B N, McCann P J, Fang X M, Hauenstein R J, O'steen M and Johnson M B 1997 J. Electron. Mater. 26 444
[22] Gannon R N, Choffel M M, Blackwood H R, Wolff N, Lotnyk A, Kienle L and Johnson D C 2022 Z. Anorg. Allg. Chem. e202200015
[23] Moore D B, Beekman M, Disch S, Zschack P, Häusler I, Neumann W and Johnson D C 2013 Chem. Mater. 25 2404
[24] Grosse C, Alemayehu M B, Falmbigl M, Mogilatenko A, Chiatti O, Johnson D C and Fischer S F 2016 Sci. Rep. 6 33457
[25] Cordova D L M, Fender S S, Hooshmand M S, Buchanan M R, Davis J, Kam T M, Gannon R N, Fischer R, Lu P, Hanken B E, Asta M and Johnson D C 2020 Chem. Mater. 32 7992
[26] Cordova D L M, Kam T M, Fender S S, Tsai Y H and Johnson D C 2019 Phys. Status Solidi A 216 1800896
[27] Galle T, Samadi Khoshkhoo M, Martin-Garcia B, Meerbach C, Sayevich V, Koitzsch A, Lesnyak V and Eychmüller A 2019 Chem. Mater. 31 3803
[28] Shao Z, Zheng F, Zhang Z, Sun H, Li S, Yuan H, Li Q, Zhang P and Pan M 2019 ACS Nano 13 2615
[29] Mane R S and Lokhande C D 2000 Mater. Chem. Phys. 65 1
[30] Kim D K, Vemulkar T R, Oh S J, Koh W K, Murray C B and Kagan C R 2011 ACS Nano 5 3230
[31] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Lu J, Song S, Zhang S, Song Y, Cao Y, Wang Z, Huang L, Lu H, Zhang Y Y, Pantelides S T, Du S, Lin X and Gao H J 2022 Nano Res. 15 6730
[34] Lu J, Gao L, Song S, Li H, Niu G, Chen H, Qian T, Ding H, Lin X, Du S and Gao H J 2021 ACS Appl. Nano Mater. 4 8845
[35] Li X B, Guo P, Zhang Y N, Peng R F, Zhang H and Liu L M 2015 J. Mater. Chem. C 3 6284
[36] Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies, 1st edn.
[37] Carnevali V, Marcantoni S and Peressi M 2021 Comp. Mater. Sci. 196 110516
[38] Wu Q, Bagheri Tagani M, Zhang L, Wang J, Xia Y, Zhang L, Xie S Y, Tian Y, Yin L J, Zhang W, Rudenko A N, Wee A T S, Wong P K J and Qin Z 2022 ACS Nano 16 6541
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[4] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[5] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[6] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[7] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[8] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[11] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[12] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[13] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
No Suggested Reading articles found!