Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010201    DOI: 10.1088/1674-1056/ac7554
GENERAL   Next  

The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems

Jing Yue(岳靖)1, Jian Li(李剑)1,†, Wen Zhang(张文)1, and Zhangxin Chen(陈掌星)2,3
1 School of Electrical and Control Engineering, School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, China;
2 School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China;
3 Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N. W., Calgary, Alberta T2 N;
1 N4, Canada
Abstract  We present an efficient deep learning method called coupled deep neural networks (CDNNs) for coupling of the Stokes and Darcy-Forchheimer problems. Our method compiles the interface conditions of the coupled problems into the networks properly and can be served as an efficient alternative to the complex coupled problems. To impose energy conservation constraints, the CDNNs utilize simple fully connected layers and a custom loss function to perform the model training process as well as the physical property of the exact solution. The approach can be beneficial for the following reasons: Firstly, we sample randomly and only input spatial coordinates without being restricted by the nature of samples. Secondly, our method is meshfree, which makes it more efficient than the traditional methods. Finally, the method is parallel and can solve multiple variables independently at the same time. We present the theoretical results to guarantee the convergence of the loss function and the convergence of the neural networks to the exact solution. Some numerical experiments are performed and discussed to demonstrate performance of the proposed method.
Keywords:  scientific computing      machine learning      the Stokes equations      Darcy-Forchheimer problems      Beavers-Joseph-Saffman interface condition  
Received:  07 April 2022      Revised:  18 May 2022      Accepted manuscript online:  02 June 2022
PACS:  02.30.Jr (Partial differential equations)  
  47.11.-j (Computational methods in fluid dynamics)  
  07.05.Tp (Computer modeling and simulation)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 11771259), the Special Support Program to Develop Innovative Talents in the Region of Shaanxi Province, the Innovation Team on Computationally Efficient Numerical Methods Based on New Energy Problems in Shaanxi Province, and the Innovative Team Project of Shaanxi Provincial Department of Education (Grant No. 21JP013).
Corresponding Authors:  Jian Li     E-mail:  jianli@sust.edu.cn,jiaaanli@gmail.com

Cite this article: 

Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星) The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems 2023 Chin. Phys. B 32 010201

[1] Li J, Bai Y and Zhao X 2023 Modern Numerical Methods for Mathematical Physics Equations (Beijing: Science Press) p. 10 (in Chinese)
[2] Li J, Lin X and Chen Z 2022 Finite Volume Methods for the Incompressible Navier-Stokes Equations (Berlin: Springer) p. 15
[3] Li J 2019 Numerical Methods for the Incompressible Navier-Stokes Equations (Beijing: Science Press) p. 8
[4] Saffman P G 1971 Stud. Appl. Math. 50 93
[5] Forchheimer P 1901 Zeitz. Ver. Duetch Ing. 45 1782 (in Japanese)
[6] Park E J 1995 SIAM J. Numer. Anal. 32 865
[7] Kim M Y and Park E J 1999 Comput. Math. Appl. 38 113
[8] Park E J 2005 Numer. Methods Part. Differ. Equ. 21 213
[9] Discacciati M, Miglio E and Quarteroni A 2002 Appl. Numer. Math. 43 57
[10] Layton W J, Schieweck F and Yotov I 2003 SIAM J. Numer. Anal. 40 2195
[11] Riviére B 2005 J. Sci. Comput. 22 479
[12] Riviére B and Yotov I 2005 SIAM J. Numer. Anal. 42 1959
[13] Burman E and Hansbo P 2007 J. Comput. Appl. Math. 198 35
[14] Gatica G N, Oyarzúa R and Sayas F J 2011 Math. Comput. 80 1911
[15] Girault V, Vassilev D and Yotov I 2014 Numer. Math. 127 93
[16] Lipnikov K, Vassilev D and Yotov I 2014 Numer. Math. 126 321
[17] Qiu C X, He X M, Li J and Lin Y P 2020 J. Comput. Phys. 411 109400
[18] Li R, Gao Y L, Li J and Chen Z X 2018 J. Comput. Appl. Math. 334 111
[19] He Y N and Li J 2010 Int. J. Numer. Anal. Mod. 62 647
[20] Liu X, Li J and Chen Z X 2018 J. Comput. Appl. Math. 333 442
[21] Li J, Mei L Q and He Y N 2006 Appl. Math. Comput. 182 24
[22] Zhu L P, Li J and Chen Z X 2011 J. Comput. Appl. Math. 235 2821
[23] Krizhevsky A, Sutskever I and Hinton G E 2012 Commun. ACM 64 84
[24] Hinton G, Deng L, Yu D, et al. 2012 IEEE Signal Proc. Mag. 29 82
[25] He K M, Zhang X Y, Ren S Q, et al. 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition June 27-30, 2016, Las Vegas, NV, USA p. 770
[26] Cotter N E 1990 IEEE Trans. Neural Networks 4 290
[27] Hornik K, Stinchcombe M and White H 1989 Neural Networks 2 359
[28] Hornik K, Stinchcombe M and White H 1990 Neural Networks 3 551
[29] Hornik K 1991 Neural Networks 4 251
[30] Cybenko G 1989 Math. Control Signal. 2 303
[31] Telgrasky M 2016 Proc. Mach. Learn. Res. 49 1517
[32] Mhaskar H, Liao Q L and Poggio T 2016 arXiv:1603.00988v4[cs.LG]
[33] Khoo Y, Lu J F and Ying L X 2017 arXiv:1707.03351[math.NA]
[34] Li J, Yue J, Zhang W, et al. 2022 J. Sci. Comput. (accepted)
[35] Li J, Zhang W and Yue J 2021 Int. J. Numer. Anal. Model. 18 427
[36] Yue J and Li J 2022 Int. J. Numer. Methods Fluids. 94 1416
[37] Yue J and Li J 2023 Appl. Math. Comput. 437 127514
[38] Fan Y W, Lin L, Ying L X, et al. 2018 arXiv:1807.01883[math.NA]
[39] Wang M, Cheung S W, Chung E T, et al. 2018 arXiv:1810.12245[math.NA]
[40] Li X 1996 Neurocomputing 12 327
[41] Lagaris I E, Likas A C and Fotiadis D I 1998 IEEE Trans. Neural Network 9 987
[42] Lagaris I E, Likas A C and Papageorgiou D G 2000 IEEE Trans. Neural Network 11 1041
[43] McFall K S and Mahan J R 2009 IEEE Trans. Neural Network 20 1221
[44] Raissi M, Perdikaris P and Karniadakis G E 2017 arXiv:1711.10561[cs.AI]
[45] Raissi M, Perdikaris P and Karniadakis G E 2017 arXiv:1711.10566[cs.AI]
[46] Raissi M, Perdikaris P and Karniadakis G E 2019 J. Comput. Phys. 378 686
[47] Yang L, Meng X H and Karniadakis G E 2021 J. Comput. Phys. 425 109913
[48] Rao C P, Sun H and Liu Y 2020 arXiv: 2006.08472v1[math.NA]
[49] Olivier P and Fablet R 2020 arXiv:2002.01029 [physics.comp-ph]
[50] Lu L, Meng X H, Mao Z P, et al. 2021 SIAM Rev. 63 208
[51] Fang Z W and Zhan J 2020 IEEE Access 8 26328
[52] Pang G F, Lu L and Karniadakis G E 2019 SIAM J. Sci. Comput. 41 A2603
[53] Zhu Y H, Zabaras N, Koutsourelakis P S, et al. 2019 J. Comput. Phys. 394 56
[54] Sirignano J and Spiliopoulos K 2018 J. Comput. Phys. 375 1339
[55] Beaver G S and Joseph D D 1967 J. Fluid Mech. 30 197
[56] Zhao L, Chung E T, Park E J and Zhou G 2021 SIAM J. Numer. Anal. 59 1
[57] Kovasznay L I G 1948 Math. Proc. Cambridge 44 58
[58] Léon Bottou 2012 Lecture Notes in Computer Science Grégoire M, Genevieve B O and Klaus R M (eds) (Berlin: Springer) pp. 430-445
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[4] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[5] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[8] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[9] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[10] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[11] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[12] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[13] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[14] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[15] Methods and applications of RNA contact prediction
Huiwen Wang(王慧雯) and Yunjie Zhao(赵蕴杰)†. Chin. Phys. B, 2020, 29(10): 108708.
No Suggested Reading articles found!