1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick InAs/AlSb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile strain energy in the InAs sublayer was equal to the compressive strain energy in the AlSb sublayer. For the four-constituent active region, as the compressive strain in the Ga0.65In0.35Sb alloy layer was large, a tensile strain was incorporated in the chirped InAs/AlSb superlattice region for strain compensation to the Ga0.65In0.35Sb alloy. A laser structure of thickness 6 μm was grown on the GaSb substrate by molecular beam epitaxy. The wafer exhibited good surface morphology and high crystalline quality.
(Molecular, atomic, ion, and chemical beam epitaxy)
Fund: Project supported by the National Key Research and Development Project of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant Nos. 61790583, 61835011, 62174158 and 61991431), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021107), and the Key Program of the Chinese Academy of Sciences (Grant No. XDB43000000).
Corresponding Authors:
Shu-Man Liu, Ning Zhuo
E-mail: liusm@semi.ac.cn;zhuoning@semi.ac.cn
Cite this article:
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇) Strain compensated type II superlattices grown by molecular beam epitaxy 2023 Chin. Phys. B 32 046802
[1] Meyer J R, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D and Vurgaftman I 2020 Photonics7 75 [2] Loghmari Z, Bahriz M, Thomas D D, Meguekam A, Nguyen Van H, Teissier R and Baranov A N 2018 Electron. Lett.54 1045 [3] Canedy C L, Bewley W W, Lindle J R, Kim C S, Kim M, Vurgaftman I and Meyer J R 2006 J. Electron. Mater.35 453 [4] Canedy C L, J Abell, Bewley W W, Aifer E H, Kim C S, Nolde J A, Kim M, Tischler J G, Lindle J R, Jackson E M, Vurgaftman I and Meyer J R 2010 J. Vac. Sci. Technol. B28 C3G8 [5] Cui S N, Jiang D W, Sun J, Jia Q X, Li N, Zhang X, Li Y, Chang F R, Wang G W, Xu Y Q and Niu Z C 2020 Chin. Phys. B29 048502 [6] Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B29 038504 [7] Cui J, Yao Y, Wang D W, Wang G W, Wang Y G, Shen X and Yu R C 2018 J. Appl. Phys.124 245301 [8] Nicolai J, Warot-Fonrose B, Gatel C, Teissier R, Baranov A N, Magen C and Ponchet A 2015 J. Appl. Phys.118 035305 [9] Bauer A, Dallner M, Herrmann A, Lehnhardt T, Kamp M, Höfling S, Worschech L and Forchel A 2010 Nanotechnology21 455603 [10] Li L G, Liu S M, Luo S, Yang T, Wang L J, Liu F Q, Ye X L, Xu B and Wang Z G 2011 Chin. Phys. Lett.28 116802 [11] Hu Y, Tam M C and Wasilewski Z R 2019 J. Vac. Sci. Technol. B37 032902 [12] Canedy C L, Bewley W W, Boishin G I, Kim C S, Vurgaftman I, Kim M, Meyer J R and Whitman L J 2005 J. Vac. Sci. Technol. B23 1119 [13] Canedy C L, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2003 J. Appl. Phys.94 1347 [14] Yang M J, Moore W J, Bennett B R, Shanabrook B V, Cross J O, Bewley W W, Felix C L, Vurgaftman I and Meyer J R 1999 J. Appl. Phys.86 1796 [15] Kaspi R, Lu C A, Newell T C, Yang C and Luong S 2015 J. Crys. Growth424 24 [16] Hill C J and Yang R Q 2005 J. Crys. Growth278 167 [17] Haugan H J, Brown G J, Mahalingam K, Grazulis L, Noe G T, Ogden N E and Kono J 2014 J. Vac. Sci. Tech. B32 02C109 [18] Haugan H J, Brown G J, Elhamri S, Mitchel W C, Mahalingam K, Kim M, Noe G T, Ogden N E and Kono J 2012 Appl. Phys. Lett.101 171105 [19] Haugan H J, Brown G J, Mahalingam K and Grazulis L 2015 Infrared Phys. Techonol.70 99 [20] Matthew J W and Blakeslee A E 1975 J. Cryst. Growth29 273 [21] People R and Bean J C 1985 Appl. Phys. Lett.47 322 [22] People R and Bean J C 1986 Appl. Phys. Lett.49 229 [23] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys.89 5815 [24] Ohtani K, Beck M and Faist J 2016 ACS Photonics3 2297 [25] Nilsen T A, Breivik M, Selvig E and Fimland B O 2009 J. Cryst. Growth311 1688 [26] Yu T, Liu S, Zhang J, Xu B, Wang L, Liu J, Zhuo N, Zhai S, Ye X, Chen Y, Liu F and Wang Z 2018 J. Semicond.39 114003 [27] Yu T, Ning C, Sun R X, Liu S M, Zhang J C, Liu J Q, Wang L J, Zhuo N, Zhai S Q, Ye X L, Li Yuan and Liu F Q 2022 AIP Adv.12 015027 [28] Ning C, Yu T, Liu S, Zhang J, Wang L, Liu J, Zhuo N, Zhai S, Li Y and Liu F 2022 Chin. Opt. Lett.20 022501
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.