Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046802    DOI: 10.1088/1674-1056/ac7cd4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Strain compensated type II superlattices grown by molecular beam epitaxy

Chao Ning(宁超)1,2, Tian Yu(于天)1,2, Rui-Xuan Sun(孙瑞轩)1,2, Shu-Man Liu(刘舒曼)1,2,†, Xiao-Ling Ye(叶小玲)1,2, Ning Zhuo(卓宁)1,2,‡, Li-Jun Wang(王利军)1,2, Jun-Qi Liu(刘俊岐)1,2, Jin-Chuan Zhang(张锦川)1,2, Shen-Qiang Zhai(翟慎强)1,2, and Feng-Qi Liu(刘峰奇)1,2,3
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick InAs/AlSb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile strain energy in the InAs sublayer was equal to the compressive strain energy in the AlSb sublayer. For the four-constituent active region, as the compressive strain in the Ga0.65In0.35Sb alloy layer was large, a tensile strain was incorporated in the chirped InAs/AlSb superlattice region for strain compensation to the Ga0.65In0.35Sb alloy. A laser structure of thickness 6 μm was grown on the GaSb substrate by molecular beam epitaxy. The wafer exhibited good surface morphology and high crystalline quality.
Keywords:  type-II superlattices      strain compensation      molecular beam epitaxy  
Received:  25 April 2022      Revised:  22 June 2022      Accepted manuscript online:  29 June 2022
PACS:  68.65.Cd (Superlattices)  
  61.72.uj (III-V and II-VI semiconductors)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Key Research and Development Project of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant Nos. 61790583, 61835011, 62174158 and 61991431), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021107), and the Key Program of the Chinese Academy of Sciences (Grant No. XDB43000000).
Corresponding Authors:  Shu-Man Liu, Ning Zhuo     E-mail:  liusm@semi.ac.cn;zhuoning@semi.ac.cn

Cite this article: 

Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇) Strain compensated type II superlattices grown by molecular beam epitaxy 2023 Chin. Phys. B 32 046802

[1] Meyer J R, Bewley W W, Canedy C L, Kim C S, Kim M, Merritt C D and Vurgaftman I 2020 Photonics 7 75
[2] Loghmari Z, Bahriz M, Thomas D D, Meguekam A, Nguyen Van H, Teissier R and Baranov A N 2018 Electron. Lett. 54 1045
[3] Canedy C L, Bewley W W, Lindle J R, Kim C S, Kim M, Vurgaftman I and Meyer J R 2006 J. Electron. Mater. 35 453
[4] Canedy C L, J Abell, Bewley W W, Aifer E H, Kim C S, Nolde J A, Kim M, Tischler J G, Lindle J R, Jackson E M, Vurgaftman I and Meyer J R 2010 J. Vac. Sci. Technol. B 28 C3G8
[5] Cui S N, Jiang D W, Sun J, Jia Q X, Li N, Zhang X, Li Y, Chang F R, Wang G W, Xu Y Q and Niu Z C 2020 Chin. Phys. B 29 048502
[6] Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 29 038504
[7] Cui J, Yao Y, Wang D W, Wang G W, Wang Y G, Shen X and Yu R C 2018 J. Appl. Phys. 124 245301
[8] Nicolai J, Warot-Fonrose B, Gatel C, Teissier R, Baranov A N, Magen C and Ponchet A 2015 J. Appl. Phys. 118 035305
[9] Bauer A, Dallner M, Herrmann A, Lehnhardt T, Kamp M, Höfling S, Worschech L and Forchel A 2010 Nanotechnology 21 455603
[10] Li L G, Liu S M, Luo S, Yang T, Wang L J, Liu F Q, Ye X L, Xu B and Wang Z G 2011 Chin. Phys. Lett. 28 116802
[11] Hu Y, Tam M C and Wasilewski Z R 2019 J. Vac. Sci. Technol. B 37 032902
[12] Canedy C L, Bewley W W, Boishin G I, Kim C S, Vurgaftman I, Kim M, Meyer J R and Whitman L J 2005 J. Vac. Sci. Technol. B 23 1119
[13] Canedy C L, Bewley W W, Kim C S, Kim M, Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 1347
[14] Yang M J, Moore W J, Bennett B R, Shanabrook B V, Cross J O, Bewley W W, Felix C L, Vurgaftman I and Meyer J R 1999 J. Appl. Phys. 86 1796
[15] Kaspi R, Lu C A, Newell T C, Yang C and Luong S 2015 J. Crys. Growth 424 24
[16] Hill C J and Yang R Q 2005 J. Crys. Growth 278 167
[17] Haugan H J, Brown G J, Mahalingam K, Grazulis L, Noe G T, Ogden N E and Kono J 2014 J. Vac. Sci. Tech. B 32 02C109
[18] Haugan H J, Brown G J, Elhamri S, Mitchel W C, Mahalingam K, Kim M, Noe G T, Ogden N E and Kono J 2012 Appl. Phys. Lett. 101 171105
[19] Haugan H J, Brown G J, Mahalingam K and Grazulis L 2015 Infrared Phys. Techonol. 70 99
[20] Matthew J W and Blakeslee A E 1975 J. Cryst. Growth 29 273
[21] People R and Bean J C 1985 Appl. Phys. Lett. 47 322
[22] People R and Bean J C 1986 Appl. Phys. Lett. 49 229
[23] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[24] Ohtani K, Beck M and Faist J 2016 ACS Photonics 3 2297
[25] Nilsen T A, Breivik M, Selvig E and Fimland B O 2009 J. Cryst. Growth 311 1688
[26] Yu T, Liu S, Zhang J, Xu B, Wang L, Liu J, Zhuo N, Zhai S, Ye X, Chen Y, Liu F and Wang Z 2018 J. Semicond. 39 114003
[27] Yu T, Ning C, Sun R X, Liu S M, Zhang J C, Liu J Q, Wang L J, Zhuo N, Zhai S Q, Ye X L, Li Yuan and Liu F Q 2022 AIP Adv. 12 015027
[28] Ning C, Yu T, Liu S, Zhang J, Wang L, Liu J, Zhuo N, Zhai S, Li Y and Liu F 2022 Chin. Opt. Lett. 20 022501
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[3] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[4] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[5] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[6] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[9] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[10] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[11] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[12] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[15] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
No Suggested Reading articles found!