Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057101    DOI: 10.1088/1674-1056/ac3506

First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects

Zhuo-Cheng Hong(洪卓呈)1, Pei Yao(姚佩)1, Yang Liu(刘杨)2,3, and Xu Zuo(左旭)1,4,5,†
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Municipal Key Laboratory of Photo-electronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, China;
5 Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin 300350, China
Abstract  The holes induced by ionizing radiation or carrier injection can depassivate saturated interface defects. The depassivation of these defects suggests that the deep levels associated with the defects are reactivated, affecting the performance of devices. This work simulates the depassivation reactions between holes and passivated amorphous-SiO2/Si interface defects (HPb+h→ Pb+H+). The climbing image nudged elastic band method is used to calculate the reaction curves and the barriers. In addition, the atomic charges of the initial and final structures are analyzed by the Bader charge method. It is shown that more than one hole is trapped by the defects, which is implied by the reduction in the total number of valence electrons on the active atoms. The results indicate that the depassivation of the defects by the holes actually occurs in three steps. In the first step, a hole is captured by the passivated defect, resulting in the stretching of the Si-H bond. In the second step, the defect captures one more hole, which may contribute to the breaking of the Si-H bond. The H atom is released as a proton and the Si atom is three-coordinated and positively charged. In the third step, an electron is captured by the Si atom, and the Si atom becomes neutral. In this step, a Pb-type defect is reactivated.
Keywords:  a-SiO2/Si interface      hole      depassivation      first-principles calculation  
Received:  06 May 2021      Revised:  21 October 2021      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Bb (Theories and models of crystal defects)  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the Science Challenge Project (Grant No.TZ2016003-1-105),Tianjin Natural Science Foundation,China (Grant No.20JCZDJC00750),and the Fundamental Research Funds for the Central Universities-Nankai University (Grant Nos.63211107 and 63201182).
Corresponding Authors:  Xu Zuo,     E-mail:
About author:  2021-11-1

Cite this article: 

Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭) First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects 2022 Chin. Phys. B 31 057101

[1] Brower K L 1983 Appl. Phys. Lett. 43 1111
[2] Choi W K, Poon F W, Loh F C and Tan K L 1997 J. Appl. Phys. 81 7386
[3] Caplan P J, Poindexter E H, Deal B E and Razouk R R 2014 J. Appl. Phys. 50 5847
[4] Pantelides S T, Rashkeev S N, Buczko R, Fleetwood D M and Schrimpf R D 2000 IEEE Trans. Nucl. Sci. 47 2262
[5] Brower K L 1990 Phys. Rev. B 42 3444
[6] Pantelides S T, Tsetseris L, Rashkeev S N, et al. 2007 Microelectron. Reliab. 47 903
[7] Brower K L 1988 Phys. Rev. B 38 9657
[8] Stathis J H and Cartier E 1994 Phys. Rev. Lett. 72 2745
[9] Guerin C, Huard V and Bravaix A 2009 J. Appl. Phys. 105 114513
[10] Jech M, Tyaginov S, Kaczer B, et al. 2019 IEEE International Electron Devices Meeting (IEDM), December, 2019, San Francisco, CA, USA, p. 24.1.1
[11] Winokur P S, Boesch H E, McGarrity J M and McLean F B 1979 J. Appl. Phys. 50 3492
[12] Witham H S and Lenahan P M 1987 IEEE Trans. Nucl. Sci. 34 1147
[13] Winokur P S and Sokoloski M M 1976 Appl. Phys. Lett. 28 627
[14] Hu G and Johnson W C 1980 Appl. Phys. Lett. 36 590
[15] McLean F B 1980 IEEE Trans. Nucl. Sci. 27 1651
[16] Weinberg Z A 1975 Appl. Phys. Lett. 27 437
[17] Afanas'ev V V and Stesmans A 2000 Appl. Phys. Lett. 77 2024
[18] Jech M, El-Sayed A M, Tyaginov S, Shluger A L and Grasser T 2019 Phys. Rev. B 100 195302
[19] Schwank J R, Shaneyfelt M R, Fleetwood D M, et al. 2008 IEEE Trans. Nucl Sci. 55 1833
[20] McLean F B, Ausman G A, Boesch H E and McGarrity J M 1976 J. Appl. Phys. 47 1529
[21] DiMaria D J, Weinberg Z A and Aitken J M 1977 J. Appl. Phys. 48 898
[22] Powell R J 1975 J. Appl. Phys. 46 4557
[23] Weinberg Z A and Rubloff G W 1978 Appl. Phys. Lett. 32 184
[24] Buchanan D A and DiMaria D J 1990 J. Appl. Phys. 67 7439
[25] Ning T H 1976 J. Appl. Phys. 47 1079
[26] Buchanan D A, Fischetti M V and DiMaria D J 1991 Phys. Rev. B 43 1471
[27] Lai S K 1981 Appl. Phys. Lett. 39 58
[28] DiMaria D J, Buchanan D A, Stathis J H and Stahlbush R E 1995 J. Appl. Phys. 77 2032
[29] Lai S K 1983 J. Appl. Phys. 54 2540
[30] Schwerin A V, Heyns M M and Weber W 1990 J. Appl. Phys. 67 7595
[31] Ogawa S and Shiono N 1992 Appl. Phys. Lett. 61 807
[32] Hong Z C and Zuo X 2020 Journal of System Simulation 32 2362
[33] Li P, Chen Z H, Yao P, et al. 2019 Appl. Surf. Sci. 483 231
[34] Huang B Q, Zhou T G, Wu D X, Zhang Z F and Li B K 2019 Acta Phys. Sin. 68 246301 (in Chinese)
[35] Xia D, Le C C, Wu X X, et al. 2016 Chin. Phys. Lett. 33 127301
[36] Sun J P, Zhang D and Chang K 2017 Chin. Phys. Lett. 34 027102
[37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[38] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[39] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter. 21 084204
[40] Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354
[41] Yu M and Trinkle D R 2011 J. Chem. Phys. 134 064111
[42] Li P, Song Y and Zuo X 2019 Phys. Status Solidi RRL 13 1800547
[43] Stirling A, Pasquarello A, Charlier J C and Car R 2000 Phys. Rev. Lett. 85 2773
[44] Hughart D R, Schrimpf R D, Fleetwood D M, Tuttle B R and Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2930
[45] Doyle B and Bourcerie M 1990 IEEE Trans. Electron Devices 37 744
[46] Acovic A, Rosa G L and Sun Y C 1996 Microelectron Reliab 36 845
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[10] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[11] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[12] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[13] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[14] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[15] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
No Suggested Reading articles found!