Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞)1,2, Wen-Xian Yang(杨文献)2, Jun-Hua Long(龙军华)2, Ming Tan(谭明)1,2, Shan Jin(金山)2, Dong-Ying Wu(吴栋颖)2, Yuan-Yuan Wu(吴渊渊)2, and Shu-Long Lu(陆书龙)1,2,†
1 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; 2 Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract The internal behaviors of carriers in InGaAsP single-junction solar cell are investigated by using electroluminescence (EL) measurements. Two emission peaks can be observed in current-dependent electroluminescence spectra at low temperatures, and carrier localization exists for both peaks under low excitation. The trends of power index α extracted from excitation-dependent EL spectra at different temperatures imply that there exists a competition between Shockley-Read-Hall recombination and Auger recombination. Auger recombination becomes dominant at high temperatures, which is probably responsible for the lower current density of InGaAsP solar cell. Besides, the anomalous "S-shape" tendency with the temperature of band-edge peak position can be attributed to potential fluctuation and carrier redistribution, demonstrating delocalization, transfer, and redistribution of carriers in the continuum band-edge. Furthermore, the strong reduction of activation energy at high excitations indicates that electrons and holes escaped independently, and the faster-escaping carriers are holes.
Fund: Project supported by the National Key Research and Development Program, China (Grant No. 2018YFB2003305), the National Natural Science Foundation of China (Grant Nos. 61774165 and 61827823), and the Key Laboratory Fund in Suzhou Institute of Suzhou Nano-Tech and NanoBionis (SINANO), Chinese Academy of Sciences (Grant No. Y4JAQ21005).
Corresponding Authors:
Shu-Long Lu
E-mail: sllu2008@sinano.ac.cn
Cite this article:
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙) Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell 2023 Chin. Phys. B 32 017801
[1] Campbell J, Holden W, Qua G and Dentai A 1985 J. Quantum Electron.21 1743 [2] Dharmarasu N, Yamaguchi M, Khan A, Yamada T, Tanabe T, Takagishi S, Takamoto T, Ohshima T, Itoh H, Imaizumi M and Matsuda S 2001 Appl. Phys. Lett.79 2399 [3] Emziane M, Nicholas R J, Rogers D C and Dosanjh J 2008 Thin Solid Films516 6744 [4] Leite M S, Woo R L, Munday J N, Hong W D, Mesropian S, Law D C and Atwater H A 2013 Appl. Phys. Lett.102 033901 [5] Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits T N D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T and Schwarzburg K 2014 Prog. Photovolt: Res. Appl.22 277 [6] Ji L, Lu S, Wu Y, Dai P, Bian L, Arimochi M, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S and Yang H 2014 Sol. Energy Mater. Sol. Cells127 1 [7] Dai P, Lu S, Uchida S, Ji L, Wu Y, Tan M, Bian L and Yang H 2016 Appl. Phys. Express9 016501 [8] Oshima R, Makita K, Mizuno H, Takato H, Matsubara K and Sugaya T 2015 Jpn. J. Appl. Phys.54 08KE10 [9] Sugaya T, Nagato Y, Okano Y, Oshima R, Tayagaki T, Makita K and Matsubara K 2017 J. Vac. Sci. Technol. B35 02B103 [10] Ji L, Tan M, Honda K, Harasawa R, Yasue Y, Wu Y, Dai P, Tackeuchi A, Bian L, Lu S and Yang H 2015 Solar Energy Materials and Solar Cells137 68 [11] Wu Y, Ji L, Dai P, Tan M, Lu S and Yang H 2016 Jpn. J. Appl. Phys.55 022301 [12] Yang W, Dai P, Ji L, Tan M, Wu Y, Uchida S, Lu S and Yang H 2016 Appl. Surf. Sci.389 673 [13] Baillargeon J N, Cho A Y and Cheng K Y 1996 J. Appl. Phys.79 7652 [14] He W, Lu S L and Dong J R 2010 Appl. Phys. Lett.97 121909 [15] Hong Y G, Nishikawa A and Tu C W 2003 Appl. Phys. Lett.83 5446 [16] Mintairov A M, Sun K, Merz J L, Yuen H, Bank S, Wistey M, Harris J S, Peake G, Egorov A, Ustinov V, Kudrawiec R and Misiewicz J 2009 Semicond. Sci. Technol.24 075013 [17] Grenouillet L, Bru-Chevallier C, Guillot G, Gilet P, Duvaut P, Vannuffel C, Million A and Chenevas-Paule A 2000 Appl. Phys. Lett.76 2241 [18] Hidouri T, Saidi F, Maaref H, Rodriguez Ph and Auvray L 2016 Opt. Mater.62 267 [19] Prutskij T and Seredin P 2021 Journal of Luminescence231 117830 [20] Lin T Y, Fan J C and Chen Y F 1999 Semicond. Sci. Technol.14 406 [21] Su Z C, Xu S J, Wang R X, Ning J Q, Dong J R, Lu S L and Yang H 2017 Solar Energy Materials and Solar Cells168 201 [22] Smiri B, Hidouri T, Saidi F and Maaref H 2019 Appl. Phys. A125 134 [23] Seetoh I P, Soh C B, Fitzgerald E A and Chua S J 2013 Appl. Phys. Lett.102 101112 [24] Lu W and Fu Y 2014 Optical Spectroscopic Analysis and Calculations of Semiconductors (Beijing: Science Press) p. 94 [25] Anderson P W 1958 Phys. Rev.109 1492 [26] Lourenço S A, Dias I F L, Duarte J L, Laureto E, Aquino V M and Harmand J C 2007 Braz. J. Phys.37 1212 [27] Li X, Xu J, Wei T, Yang W, Jin S, Wu Y and Lu S 2021 Crystals11 1590 [28] Le Ru E C, Fack J and Murray R 2003 Phys. Rev. B67 245318
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2]
Selective formation of ultrathin PbSe on Ag(111) Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[3]
Effect of f-c hybridization on the phase transition of cerium studied by lanthanum doping Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.