Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 126804    DOI: 10.1088/1674-1056/ac2e63
RAPID COMMUNICATION Prev   Next  

Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate

S Lu(卢帅)1,2,†, K Peng(彭坤)1,2,†, P D Wang(王鹏栋)2,†, A X Chen(陈爱喜)2, W Ren(任伟)2,5, X W Fang(方鑫伟)2,5, Y Wu(伍莹)2, Z Y Li(李治云)2, H F Li(李慧芳)2,3, F Y Cheng(程飞宇)2, K L Xiong(熊康林)2, J Y Yang(杨继勇)4, J Z Wang(王俊忠)4, S A Ding(丁孙安)2,5, Y P Jiang(蒋烨平)3, L Wang(王利)2,‡, Q Li(李青)1,§, F S Li(李坊森)2,5,¶, and L F Chi(迟力峰)1
1 Institute of Functional Nano & Soft Materials(FUNSOM), Soochow University, Suzhou 215123, China;
2 Vacuum Interconnected Nanotech Workstation(Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China;
3 Key Laboratory of Polar Materials and Devices(MOE), Department of Electronic, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
4 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
5 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Abstract  Monolayer MnTe2 stabilized as 1T structure has been theoretically predicted to be a two-dimensional (2D) ferromagnetic metal and can be tuned via strain engineering. There is no naturally van der Waals (vdW) layered MnTe2 bulk, leaving mechanical exfoliation impossible to prepare monolayer MnTe2. Herein, by means of molecular beam epitaxy (MBE), we successfully prepared monolayer hexagonal MnTe2 on Si(111) under Te rich condition. Sharp reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED) patterns suggest the monolayer is atomically flat without surface reconstruction. The valence state of Mn4+ and the atom ratio of ([Te]:[Mn]) further confirm the MnTe2 compound. Scanning tunneling spectroscopy (STS) shows the hexagonal MnTe2 monolayer is a semiconductor with a large bandgap of ~2.78 eV. The valence-band maximum (VBM) locates at the Γ point, as illustrated by angle-resolved photoemission spectroscopy (ARPES), below which three hole-type bands with parabolic dispersion can be identified. The successful synthesis of monolayer MnTe2 film provides a new platform to investigate the 2D magnetism.
Keywords:  molecular beam epitaxy      hexagonal MnTe2      band structure  
Received:  23 August 2021      Revised:  04 October 2021      Accepted manuscript online:  11 October 2021
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.At (Surface states, band structure, electron density of states)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604366, 11634007, 21872099, and 22072102) and the National Natural Science Foundation of Jiangsu Province, China (Grant No. BK 20160397). F. S. L. acknowledges support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2017370).
Corresponding Authors:  L Wang, Q Li, F S Li     E-mail:  lwang2017@sinano.ac.cn;liqing@suda.edu.cn;liqing@suda.edu.cn

Cite this article: 

S Lu(卢帅), K Peng(彭坤), P D Wang(王鹏栋), A X Chen(陈爱喜), W Ren(任伟), X W Fang(方鑫伟), Y Wu(伍莹), Z Y Li(李治云), H F Li(李慧芳), F Y Cheng(程飞宇), K L Xiong(熊康林), J Y Yang(杨继勇), J Z Wang(王俊忠), S A Ding(丁孙安), Y P Jiang(蒋烨平), L Wang(王利), Q Li(李青), F S Li(李坊森), and L F Chi(迟力峰) Molecular beam epitaxy growth of monolayer hexagonal MnTe2 on Si(111) substrate 2021 Chin. Phys. B 30 126804

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[3] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[4] Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T and Liu Z 2017 Nat. Commun. 8 394
[5] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92
[6] Ryu H, Chen Y, Kim H, Tsai H Z, Tang S J, Jiang J, Liou F, Kahn S, Jia C H, Omrani A A, Shim J H, Hussain Z, Shen Z X, Kim K, Min B I, Hwang C, Crommie M F and Mo S K 2018 Nano Lett. 18 689
[7] Zhang D M, Ha J, Baek H, Chan Y H, Natterer F D, Myers A F, Schumacher J D, Cullen W G, Davydov A V, Kuk Y, Chou M Y, Zhitenev N B and Stroscio J A 2017 Phys. Rev. Mater. 1 024005
[8] Zelezny J, Wadley P, Olejnik K, Hoffmann A and Ohno H 2018 Nat. Phys. 14 220
[9] Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895
[10] Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685
[11] Mong R S K and Moore J E 2019 Nature 576 390
[12] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878
[13] Xu Y D, Li W, Wang C, Li J, Chen Z W, Lin S Q, Chen Y and Pei Y Z 2017 J. Mater. Chem. A 5 19143
[14] Walther K 1967 Solid State Commun. 5 399
[15] Mori S, Sutou Y, Ando D and Koike J 2018 Mater. Trans. 59 1506
[16] Kriegner D, Vyborny K, Olejnik K, Reichlova H, Novak V, Marti X, Gazquez J, Saidl V, Nemec P, Volobuev V V, Springholz G, Holy V and Jungwirth T 2016 Nat. Commun. 7 11623
[17] Mu S, Hermann R P, Gorsse S, Zhao H Z, Manley M E, Fishman R S and Lindsay L 2019 Phys. Rev. Mater. 3 025403
[18] Szuszkiewicz W, Dynowska E, Witkowska B and Hennion B 2006 Phys. Rev. B 73 104403
[19] Kim W, Park I J, Kim H J, Lee W, Kim S J and Kim C S 2009 IEEE Trans. Magn. 45 2424
[20] Hastings J M, Elliott N and Corliss L. M 1959 Phys. Rev. 115 13
[21] Xu Y D, Li W, Wang C, Chen Z W, Wu Y X, Zhang X Y, Li J Q, Lin S, Chen Y and Pei Y Z 2018 J. Materiomics 4 215
[22] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[23] Li H F, Chen A X, Wang L, Ren W, Lu S, Yang B J, Jiang Y P and Li F S 2020 Appl. Phys. Lett. 117 161601
[24] Chen W, Hu M L, Zong J Y, Xie X D, Meng Q H, Yu F, Wang L, Ren W, Chen A X, Liu G, Xi X X, Li F S, Sun J, Liu J W and Zhang Y 2021 Adv. Mater. 33 2004930
[25] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R and Smart R S 2011 Appl. Surf. Sci. 257 2717
[26] Iwanowski R J, Heinonen M H and Witkowska B 2010 J. Alloys Compd. 491 13
[27] Jiao F, Wang J, Wang X, Tian Q, Chang M, Cai L, Zhu S, Zhang D, Lu Q, Wang C, Tan S, Li Y, Jing Q, Liu B and Qian D 2021 J. Supercond. Nov. Magn. 34 1485
[28] Li H, Liu S S, Liu C, Zhang J S, Xu Y, Yu R, Wu Y, Zhang Y G and Fan S S 2020 Phys. Chem. Chem. Phys. 22 556
[29] Lupke F, Dolezal J, Cherepanov V, Ostadal I, Tautz F S and Voigtlander B 2019 Surf. Sci. 681 130
[30] Liu H W, Yuan H T, Fukui N, Zhang L, Jia J F, Iwasa Y, Chen M W, Hashizume T, Sakurai T and Xue Q K 2010 Cryst. Growth Des. 10 4491
[31] Yin G, Yu J X, Liu Y Z, Lake R K, Zang J D and Wang K L 2019 Phys. Rev. Lett. 122 106602
[32] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Phys. Chem. Solids 143 109489
[33] Sheverdyaeva P M, Mahatha S K, Ronci F, Colonna S, Moras P, Satta M and Flammini R 2017 J. Phys. Condes. Matter 29 215001
[34] Zhang J Y, Lian Q, Pan Z Q, Bai W, Yang J, Zhang Y Y, Tang X D and Chu J H 2020 J. Raman Spectrosc. 51 1383
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[7] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[10] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[11] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[12] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[13] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[14] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[15] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
No Suggested Reading articles found!