Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋)1,2, Jia Yang(杨佳)1, Yi Liu(刘艺)1, Zhipeng Gao(高志鹏)1,†, Linhong Cao(曹林洪)4, Leiming Fang(房雷鸣)3, Hongliang He(贺红亮)1, and Zhengwei Xiong(熊政伟)2,‡
1 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China; 2 Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China; 3 Institute of Physics, Nuclear, and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; 4 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Abstract Manipulating metal-insulator transitions in strongly correlated materials is of great importance in condensed matter physics, with implications for both fundamental science and technology. Vanadium dioxide (VO2), as an ideal model system, is metallic at high temperatures and shown a typical metal-insulator structural phase transition at 341 K from rutile structure to monoclinic structure. This behavior has been absorbed tons of attention for years. However, how to control this phase transition is still challenging and little studied. Here we demonstrated that to control the Ag nanonet arrays (NAs) in monoclinic VO2(M) could be effective to adjust this metal-insulator transition. With the increase of Ag NAs volume fraction by reducing the template spheres size, the transition temperature (Tc) decreased from 68° to 51°. The mechanism of Tc decrease was revealed as:the carrier density increases through the increase of Ag NAs volume fraction, and more free electrons injected into the VO2 films induced greater absorption energy at the internal nanometal-semiconductor junction. These results supply a new strategy to control the metal-insulator transitions in VO2, which must be instructive for the other strongly correlated materials and important for applications.
(Solid surfaces and solid-solid interfaces: structure and energetics)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904299 and U1930124) and the Foundation of China Academy of Engineering Physics (Grant No. 2018AB02).
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟) Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays 2021 Chin. Phys. B 30 126803
[1] Hong K, Moon C, Suh J, Lee T, Kim S, Lee S and Jang H 2019 ACS Appl. Mater. Inter.11 11568 [2] Trastoy J, Camjayi A, Valle J, Kalcheim Y and Schuller I K 2020 Phys. Rev. B101 245109 [3] Ramirez J G, Saerbeck T, Wang S, Trastoy J, Malnou M, Lesueur J, Crocombette J P, Villegas J E and Schuller I K 2015 Phys. Rev. B91 205123 [4] Wickramaratne D, Bernstein N and Mazin I I 2019 Phys. Rev. B99 214103 [5] Chen Y, Wang Z, Chen S, Ren H, Li B, Yan W, Zhang G, Jiang J and Zou C 2018 Nano Energy51 300 [6] Wang Z, Wang X, Sharman E, Li X, Yang L, Zhang G and Jiang J 2020 J. Phys. Chem. Lett.11 1075 [7] Matsuda Y H, Nakamura D, Ikeda A, Takeyama S, Suga Y, Nakahara H and Muraoka Y 2020 Nat. Commun.11 1842 [8] Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Ly T T, Kim S, Choi Y H, Jozwiak C, Bostwick A, Rotenberg E, Park J, Sankar R, Kim K, Kim J and Chang Y J 2018 Nano Lett.18 5432 [9] Lu Q, Bishop S R, Lee D, Lee S, Bluhm H, Tuller H L, Lee H N and Yildiz B 2018 Adv. Funct. Mater.28 18030241 [10] Kim S Y, Lee M C, Han G, Kratochvilova M, Yun S, Moon S J, Sohn C, Park J G, Kim C and Noh T W 2018 Adv. Mater.30 17047771 [11] Huang T, Kang T, Li Y, Li J, Deng L and Bi L 2018 Opt. Mater. Express8 2300 [12] Miao L, Peng Y, Wang D, Liang J, Hu C, Nishibori E, Sun L, Fisher C A J and Tanemura S 2020 Phys. Chem. Chem. Phys.22 7984 [13] Lu W, Zhao G, Song B, Li J, Zhang X and Han G 2017 Surf. Coat. Tech.320 311 [14] Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y and Long Y 2018 Joule2 1707 [15] Alexander P, Andrey V, Maksim B and Vadim P 2018 Phys. Rev. B536 239 [16] Blagojevic V A, Obradovic N, Cvjeticanin N and Minic D M 2013 Sci. Sinter.45 305 [17] Hu B, Zhang Y, Chen W, Xu C and Wang Z 2011 Adv. Mater.23 3536 [18] Li M, Magdassi S, Gao Y and Long Y 2017 Small13 1701147 [19] Tian X, Wu C, Xie Y, Wei S, Yao T, Long R, Sun Z, Feng Y, Cheng H and Yuan X 2012 Sci. Rep-UK2 466 [20] Kim G H, Rathi S, Baik J M and Yi K S 2015 Curr. Appl. Phys.15 1107 [21] Li M, Ji S, Pan J, Wu H, Zhong L, Wang Q, Li F and Li G 2014 J. Mater. Chem. A2 48 [22] Lu X, Xiao X, Cao Z, Cheng H and Xu G 2016 RSC Adv.6 47249 [23] Zhou Z, Li J, Xiong Z, Cao L, Fu Y and Gao Z 2020 Sol. Energy Mater. Sol. Cells206 110303 [24] Zhou L, Hu M, Song X, Li P, Qiang X and Liang J 2018 Appl. Phys. A124 5051 [25] Ferrara D W, MacQuarrie E R, Diez-Blanco V, Nag J, Kaye A B and Jr R F H 2012 Appl. Phys. A108 255 [26] Madaras S E, Creeden J, Kittiwatanakul S, Lu J, Novikova I and Lukaszew R A 2018 Opt. Express26 25657 [27] Ferrara D W, Nag J, MacQuarrie E R, Kaye A B and Haglund R F Jr 2013 Nano Lett.13 4169 [28] Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F and Liu H 2006 Appl. Surf. Sci.252 5512 [29] Leroy J, Bessaudou A, Cosset F and Crunteanu A 2012 Thin Solid Films520 4823 [30] Thery V, Boulle A, Crunteanu A, Orlianges J C, Beaumont A, Mayet R, Mennai A, Cosset F, Bessaudou A and Fabert M 2016 Phys. Rev. B93 184106 [31] Vu T D, Chen Z, Zeng X, Jiang M, Liu S, Gao Y and Long Y 2019 J. Mater. Chem. C7 2121 [32] Xin Y, Jin H, Yong Z, Sun L, Feng G, Liu H, Wang F, Jiang X, Wu W and Zheng W 2017 Nanomaterials7 291 [33] Josh C, Choudhuri M, Raya M, Chowdhury D, Chattopadhyay P P and Datta A 2018 Mater. Today5 10143 [34] Popuri S R, Miclau M, Artemenko A, Labrugere C and Pollet M 2013 Inorg. Chem.52 4780 [35] Corr S A, Grossman M, Shi Y, Heier K R, Stucky G D and Seshadri R 2009 J. Mater. Chem.19 4362 [36] Grunwaldt J D, Atamny F, Gbel U and Baiker A 1996 Appl. Surf. Sci.99 353 [37] Ke Y, Wen X, Zhao D, Che R, Xiong Q and Long Y 2017 ACS Nano11 7542 [38] Hulteen J C and Richard P V D 1995 J. Vac. Sci. Technol. A13 1553 [39] Arndt A, Spoddig D, Esquinazi P, Barzola Q J, Dusari S and Butz T 2009 Phys. Rev. B80 195402 [40] Zhou Y and Ramanathan S 2013 J. Appl. Phys.113 213703 [41] Zylbersztejn A and Mott N F 1975 Phys. Rev. B11 4383 [42] Uda M, Nakamura A and Yamamoto T 1998 J. Electron. Spectrosc.88 643 [43] Chen L, Cui Y, Shi S, Luo H and Gao Y 2018 Appl. Surf. Sci.450 318 [44] Xu G, Huang C M, Tazawa M, Jin P, Chen D M and Miao L 2008 Appl. Phys. Lett.93 4383 [45] Takami H, Kanki T and Tanaka H 2016 AIP Adv.6 065118
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.