Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110701    DOI: 10.1088/1674-1056/ac89e4

Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm

Wei-Xia Luo(罗伟霞)1,2, Xue-Lu Liu(刘雪璐)1,†, Xiang-Dong Luo(罗向东)3, Feng Yang(杨峰)4,5, Shen-Jin Zhang(张申金)4,5, Qin-Jun Peng(彭钦军)4,5, Zu-Yan Xu(许祖彦)4,5, and Ping-Heng Tan(谭平恒)1,2,‡
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering&CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Jiangsu Key Laboratory of ASIC, Nantong University, Nantong 226019, China;
4 Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
5 Key Laboratory of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Photoreflectance (PR) spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors. In most PR systems, the photon energy of the pumping beam is usually chosen to be higher than the bandgap energy of the sample. To the best of our knowledge, the highest energy of pumping laser in reported PR systems is 5.08 eV (244 nm), not yet in the vacuum ultraviolet (VUV) region. In this work, we report the design and construction of a PR system pumped by VUV laser of 7.0 eV (177.3 nm). At the same time, dual-modulated technique is applied and a dual channel lock-in-amplifier is integrated into the system for efficient PR measurement. The system's performance is verified by the PR spectroscopy measurement of well-studied semiconductors, which testifies its ability to probe critical-point energies of the electronic band in semiconductors from ultraviolet to near-infrared spectral region.
Keywords:  photoreflectance spectroscopy      vacuum ultraviolet laser      electronic band structure      critical points of electron density of states  
Received:  30 May 2022      Revised:  29 July 2022      Accepted manuscript online:  16 August 2022
PACS:  07.60.-j (Optical instruments and equipment)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the National Development Project for Major Scientific Research Facility of China (Grant No. ZDYZ2012-2), the National Natural Science Foundation of China (Grant No. 11874350), and CAS Key Research Program of Frontier Sciences (Grant Nos. ZDBS-LY-SLH004 and XDPB22).
Corresponding Authors:  Xue-Lu Liu, Ping-Heng Tan     E-mail:;

Cite this article: 

Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒) Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm 2022 Chin. Phys. B 31 110701

[1] Glembocki O J and Shanabrook B V 1992 Semiconductors and Semimetals (Elsevier) 36 pp. 221–292
[2] Kudrawiec R and Misiewicz J 2012 Semiconductor Research: Experimental Techniques (Berlin, Heidelberg: Springer) pp. 95–124
[3] Liu X L, Wu J B, Luo X D and Tan P H 2017 Acta Phys. Sin. 66 147801 (in Chinese)
[4] Fuertes Marrón D 2017 Int. J. Photoenergy 2017 4894127
[5] Bhimnathwala H and Borrego J M 1992 Solid State Electron. 35 1503
[6] Kudrawiec R, Rudziński M, Serafinczuk J, Zaja? M and Misiewicz J 2009 J. Appl. Phys. 105 093541
[7] Sotnikov A E, Chernikov M A, Ryabushkin O A, Trubenko P, Moshegov N and Ovchinnikov A 2004 Quantum Electron. 34 871
[8] Zhang R, Yang K, Qin L H, Shen B, Shi H T, Shi Y, Gu S L, Zheng Y D, Huang Z C and Chen J C 1996 J. Vac. Sci. Technol. A 14 840
[9] Bru-Chevallier C, Fanget S, Guillot G, Ruffenach S and Briot O 2004 Thin Solid Films 450 75
[10] Munguía J, Chouaib H, de la Torre J, Bremond G, Bru-Chevallier C, Sibai A, Champagnon B, Moreau M and Bluet J M 2006 Nucl. Instrum. Methods Phys. Res. B 253 18
[11] Chen C T, Xu Z Y, Deng D Q, Zhang J, Wong G K L, Wu B C, Ye N and Tang D 1996 Appl. Phys. Lett. 68 2930
[12] Togashi T, Kanai T, Sekikawa T, Watanabe S, Chen C T, Zhang C Q, Xu Z Y and Wang J Y 2003 Opt. Lett. 28 254
[13] Lin Z Q, Chen W B, Lou Q H, Fan W, Xiang S Q and Xue H B 2013 Sci. China Technol. Sci. 56 1571
[14] Jin S Q, Fan F T, Guo M L, Zhang Y, Feng Z C and Li C 2014 Rev. Sci. Instrum. 85 046105
[15] Zhang H Y, Wu H M, Jia Y H, Geng L J, Luo Z X, Fu H B and Yao J N 2019 Rev. Sci. Instrum. 90 073101
[16] Ning Y X, Fu Q, Li Y F, Zhao S Q, Wang C, Breitschaft M, Hagen S, Schaff O and Bao X H 2019 Ultramicroscopy 200 105
[17] Wang Z H, Pan S H, Huang S, Zhang C Z and Mu S M, Zhou X C, Jian J, Xu G C and Chen Z K 1993 J. Phys. D: Appl. Phys. 26 1493
[18] Shi L, Nihtianov S, Haspeslagh L, Scholze F, Gottwald A and Nanver L K 2012 IEEE Trans. Electron Dev. 59 2888
[19] Peng Q J, Zong N, Zhang S J, Wang Z M, Yang F, Zhang F F, Xu Z Y and Zhou X J 2018 IEEE J. Sel. Top Quantum Electron. 24 1
[20] Behn U, Thamm A, Brandt O and Grahn H T 2000 J. Appl. Phys. 87 4315
[21] Theis W M, Sanders G D, Leak C E, Bajaj K K and Morkoc H 1988 Phys. Rev. B 37 3042
[22] Zhang B and Wang X J 2017 Rev. Sci. Instrum. 88 106103
[23] Lu C R, Anderson J R, Stone D R, Beard W T and Wilson R A 1990 Superlattices Microstruct. 8 155
[24] Ghosh S and Arora B M 1995 IEEE J. Sel. Top Quantum Electron. 1 1108
[25] Amirtharaj P M, Chandler-Horowitz D and Bour D P 1995 MRS Online Proceedings Library 406 229
[26] Qin J H, Huang Z M, Ge Y J, Hou Y and Chu J H 2009 Rev. Sci. Instrum. 80 033112
[27] Ghosh S and Arora B M 1998 Rev. Sci. Instrum. 69 1261
[28] Ho C H, Hsieh C H, Chen Y J, Huang Y S and Tiong K K 2001 Rev. Sci. Instrum. 72 4218
[29] Aspnes D E 1973 Surf. Sci. 37 418
[30] Wang R Z and Jiang D S 1992 J. Appl. Phys. 72 3826
[31] Lautenschlager P, Garriga M, Logothetidis S and Cardona M 1987 Phys. Rev. B 35 9174
[32] James R C and Marvin L C 1974 Phys. Rev. Lett. 32 674
[33] Li C F, Huang Y S, Malikova L and Pollak F H 1997 Phys. Rev. B 55 9251
[34] Viswanath A K, Lee J I, Yu S, Kim D, Choi Y and Hong C 1998 J. Appl. Phys. 84 3848
[35] Kudrawiec R, S?k G, Misiewicz J, Paszkiewicz R, Paszkiewicz B and T?acza?a M 2002 Mater. Sci. Eng. B 96 284
[36] Shan W, Little B D, Fischer A J, Song J J, Goldenberg B, Perry W G, Bremser M D and Davis R F 1996 Phys. Rev. B 54 16369
[1] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[2] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[3] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[4] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[5] Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide
Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃). Chin. Phys. B, 2018, 27(1): 017101.
[6] Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB:An ab-initio investigation
F Parvin, S H Naqib. Chin. Phys. B, 2017, 26(10): 106201.
[7] Exotic electronic states in the world of flat bands:From theory to material
Liu Zheng (刘峥), Liu Feng (刘锋), Wu Yong-Shi (吴咏时). Chin. Phys. B, 2014, 23(7): 077308.
[8] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo (张雅卓), Cao Jia-Mu (曹伽牧), Tan Chang-Long (谭昌龙), Cao Yi-Jiang (曹一江), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(3): 037504.
[9] Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations
Wu Kong-Ping (吴孔平), Gu Shu-Lin (顾书林), Ye Jian-Dong (叶建东), Tang Kun (汤琨), Zhu Shun-Ming (朱顺明), Zhou Meng-Ran (周孟然), Huang You-Rui (黄友锐), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2013, 22(10): 107103.
[10] Electronic structure and optical properties of the red and yellow mercuric iodides
Xu Bin(徐斌) and Lv Jian(吕健). Chin. Phys. B, 2010, 19(3): 037102.
[11] Effect of Co on magnetic property and phase stability of Ni–Mn–Ga ferromagnetic shape memory alloys: A first-principles study
Tan Chang-Long(谭昌龙), Jiang Jiu-Xing(姜久兴), Tian Xiao-Hua(田晓华), and Cai Wei(蔡伟). Chin. Phys. B, 2010, 19(10): 107102.
[12] First principles study on the ferroelectricity of the perovskite ABO3 ferroelectrics
Wang Yuan-Xu (王渊旭), Zhong Wei-Lie (钟维烈), Wang Chun-Lei (王春雷), Zhang Pei-Lin (张沛霖), Su Xuan-Tao (苏绚涛). Chin. Phys. B, 2002, 11(7): 714-719.
No Suggested Reading articles found!