INSTRUMENTATION AND MEASUREMENT |
Prev
Next
|
|
|
Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm |
Wei-Xia Luo(罗伟霞)1,2, Xue-Lu Liu(刘雪璐)1,†, Xiang-Dong Luo(罗向东)3, Feng Yang(杨峰)4,5, Shen-Jin Zhang(张申金)4,5, Qin-Jun Peng(彭钦军)4,5, Zu-Yan Xu(许祖彦)4,5, and Ping-Heng Tan(谭平恒)1,2,‡ |
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering&CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Jiangsu Key Laboratory of ASIC, Nantong University, Nantong 226019, China; 4 Key Laboratory of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 5 Key Laboratory of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Photoreflectance (PR) spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors. In most PR systems, the photon energy of the pumping beam is usually chosen to be higher than the bandgap energy of the sample. To the best of our knowledge, the highest energy of pumping laser in reported PR systems is 5.08 eV (244 nm), not yet in the vacuum ultraviolet (VUV) region. In this work, we report the design and construction of a PR system pumped by VUV laser of 7.0 eV (177.3 nm). At the same time, dual-modulated technique is applied and a dual channel lock-in-amplifier is integrated into the system for efficient PR measurement. The system's performance is verified by the PR spectroscopy measurement of well-studied semiconductors, which testifies its ability to probe critical-point energies of the electronic band in semiconductors from ultraviolet to near-infrared spectral region.
|
Received: 30 May 2022
Revised: 29 July 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
07.60.-j
|
(Optical instruments and equipment)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
Fund: Project supported by the National Development Project for Major Scientific Research Facility of China (Grant No. ZDYZ2012-2), the National Natural Science Foundation of China (Grant No. 11874350), and CAS Key Research Program of Frontier Sciences (Grant Nos. ZDBS-LY-SLH004 and XDPB22). |
Corresponding Authors:
Xue-Lu Liu, Ping-Heng Tan
E-mail: liuxuelu@semi.ac.cn;phtan@semi.ac.cn
|
Cite this article:
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒) Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm 2022 Chin. Phys. B 31 110701
|
[1] Glembocki O J and Shanabrook B V 1992 Semiconductors and Semimetals (Elsevier) 36 pp. 221–292 [2] Kudrawiec R and Misiewicz J 2012 Semiconductor Research: Experimental Techniques (Berlin, Heidelberg: Springer) pp. 95–124 [3] Liu X L, Wu J B, Luo X D and Tan P H 2017 Acta Phys. Sin. 66 147801 (in Chinese) [4] Fuertes Marrón D 2017 Int. J. Photoenergy 2017 4894127 [5] Bhimnathwala H and Borrego J M 1992 Solid State Electron. 35 1503 [6] Kudrawiec R, Rudziński M, Serafinczuk J, Zaja? M and Misiewicz J 2009 J. Appl. Phys. 105 093541 [7] Sotnikov A E, Chernikov M A, Ryabushkin O A, Trubenko P, Moshegov N and Ovchinnikov A 2004 Quantum Electron. 34 871 [8] Zhang R, Yang K, Qin L H, Shen B, Shi H T, Shi Y, Gu S L, Zheng Y D, Huang Z C and Chen J C 1996 J. Vac. Sci. Technol. A 14 840 [9] Bru-Chevallier C, Fanget S, Guillot G, Ruffenach S and Briot O 2004 Thin Solid Films 450 75 [10] Munguía J, Chouaib H, de la Torre J, Bremond G, Bru-Chevallier C, Sibai A, Champagnon B, Moreau M and Bluet J M 2006 Nucl. Instrum. Methods Phys. Res. B 253 18 [11] Chen C T, Xu Z Y, Deng D Q, Zhang J, Wong G K L, Wu B C, Ye N and Tang D 1996 Appl. Phys. Lett. 68 2930 [12] Togashi T, Kanai T, Sekikawa T, Watanabe S, Chen C T, Zhang C Q, Xu Z Y and Wang J Y 2003 Opt. Lett. 28 254 [13] Lin Z Q, Chen W B, Lou Q H, Fan W, Xiang S Q and Xue H B 2013 Sci. China Technol. Sci. 56 1571 [14] Jin S Q, Fan F T, Guo M L, Zhang Y, Feng Z C and Li C 2014 Rev. Sci. Instrum. 85 046105 [15] Zhang H Y, Wu H M, Jia Y H, Geng L J, Luo Z X, Fu H B and Yao J N 2019 Rev. Sci. Instrum. 90 073101 [16] Ning Y X, Fu Q, Li Y F, Zhao S Q, Wang C, Breitschaft M, Hagen S, Schaff O and Bao X H 2019 Ultramicroscopy 200 105 [17] Wang Z H, Pan S H, Huang S, Zhang C Z and Mu S M, Zhou X C, Jian J, Xu G C and Chen Z K 1993 J. Phys. D: Appl. Phys. 26 1493 [18] Shi L, Nihtianov S, Haspeslagh L, Scholze F, Gottwald A and Nanver L K 2012 IEEE Trans. Electron Dev. 59 2888 [19] Peng Q J, Zong N, Zhang S J, Wang Z M, Yang F, Zhang F F, Xu Z Y and Zhou X J 2018 IEEE J. Sel. Top Quantum Electron. 24 1 [20] Behn U, Thamm A, Brandt O and Grahn H T 2000 J. Appl. Phys. 87 4315 [21] Theis W M, Sanders G D, Leak C E, Bajaj K K and Morkoc H 1988 Phys. Rev. B 37 3042 [22] Zhang B and Wang X J 2017 Rev. Sci. Instrum. 88 106103 [23] Lu C R, Anderson J R, Stone D R, Beard W T and Wilson R A 1990 Superlattices Microstruct. 8 155 [24] Ghosh S and Arora B M 1995 IEEE J. Sel. Top Quantum Electron. 1 1108 [25] Amirtharaj P M, Chandler-Horowitz D and Bour D P 1995 MRS Online Proceedings Library 406 229 [26] Qin J H, Huang Z M, Ge Y J, Hou Y and Chu J H 2009 Rev. Sci. Instrum. 80 033112 [27] Ghosh S and Arora B M 1998 Rev. Sci. Instrum. 69 1261 [28] Ho C H, Hsieh C H, Chen Y J, Huang Y S and Tiong K K 2001 Rev. Sci. Instrum. 72 4218 [29] Aspnes D E 1973 Surf. Sci. 37 418 [30] Wang R Z and Jiang D S 1992 J. Appl. Phys. 72 3826 [31] Lautenschlager P, Garriga M, Logothetidis S and Cardona M 1987 Phys. Rev. B 35 9174 [32] James R C and Marvin L C 1974 Phys. Rev. Lett. 32 674 [33] Li C F, Huang Y S, Malikova L and Pollak F H 1997 Phys. Rev. B 55 9251 [34] Viswanath A K, Lee J I, Yu S, Kim D, Choi Y and Hong C 1998 J. Appl. Phys. 84 3848 [35] Kudrawiec R, S?k G, Misiewicz J, Paszkiewicz R, Paszkiewicz B and T?acza?a M 2002 Mater. Sci. Eng. B 96 284 [36] Shan W, Little B D, Fischer A J, Song J J, Goldenberg B, Perry W G, Bremser M D and Davis R F 1996 Phys. Rev. B 54 16369 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|