INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties |
Zhen-Hua Li(李振华)1,2, Peng-Fei Shao(邵鹏飞)1, Gen-Jun Shi(施根俊)1, Yao-Zheng Wu(吴耀政)1, Zheng-Peng Wang(汪正鹏)1, Si-Qi Li(李思琦)1, Dong-Qi Zhang(张东祺)1, Tao Tao(陶涛)1, Qing-Jun Xu(徐庆君)3, Zi-Li Xie(谢自力)1, Jian-Dong Ye(叶建东)1, Dun-Jun Chen(陈敦军)1, Bin Liu(刘斌)1,†, Ke Wang(王科)1,‡, You-Dou Zheng(郑有炓)1, and Rong Zhang(张荣)1,4 |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, China; 2 College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China; 3 Institute of Novel Semiconductors, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China; 4 Xiamen University, Xiamen 361005, China |
|
|
Abstract A systematic investigation on PA-MBE grown GaN with low growth rates (less than 0.2 μm/h) has been conducted in a wide growth temperature range, in order to guide future growth of sophisticated fine structures for quantum device applications. Similar to usual growths with higher growth rates, three growth regions have been revealed, namely, Ga droplets, slightly Ga-rich and N-rich 3D growth regions. The slightly Ga-rich region is preferred, in which GaN epilayers demonstrate optimal crystalline quality, which has been demonstrated by streaky RHEED patterns, atomic smooth surface morphology, and very low defect related yellow and blue luminescence bands. The growth temperature is a critical parameter to obtain high quality materials and the optimal growth temperature window (~ 700-760 ℃) has been identified. The growth rate shows a strong dependence on growth temperatures in the optimal temperature window, and attention must be paid when growing fine structures at a low growth rate. Mg and Si doped GaN were also studied, and both p- and n-type materials were obtained.
|
Received: 23 August 2021
Revised: 18 October 2021
Accepted manuscript online: 27 October 2021
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074077, 61921005, 61974062, and 61974065), the Fundamental Research Funds for the Central Universities, China (Grant No. 14380166), Key R&D Program of Jiangsu Province, China (Grant No. BE2020004-3), the National Key R&D Program of China (Grant No. 2017YFB0404101), Nature Science Foundation of Jiangsu Province, China (Grant No. BE2015111), Collaborative Innovation Center of Solid State Lighting and Energysaving Electronics. |
Corresponding Authors:
Bin Liu, Ke Wang
E-mail: bliu@nju.edu.cn;kewang@nju.edu.cn
|
Cite this article:
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣) Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties 2022 Chin. Phys. B 31 018102
|
[1] Akasaki I, Amano H and Nakamura S 2014 R. Swed. Acad. Sci. Nobel Prize Phys. [2] Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D: Appl. Phys. 51 163001 [3] Zhang Y, Dadgar A and Palacios T 2018 J. Phys. D: Appl. Phys. 51 273001 [4] Khoury M, Li H, Li P, Chow Y C, Bonef B, Zhang H, Wong M S, Pinna S, Song J, Choi J, Speck J S, Nakamura S and DenBaars S P 2020 Nano Energy 67 104236 [5] Zhang H J, Li H J, Li P P, Song J, Speck J S, Nakamura S and DenBaars S P 2020 ACS Photon. 7 1662 [6] Lu W F, Goto N, Murakami H, Sone N, Iida K, Terazawa M, Han, D P, Iwaya M, Tekeuchi T, Kamiyama S and Akasaki I 2020 Appl. Surf. Sci. 509 145271 [7] Ito K, Lu W F, Sone N, Miyamoto Y, Okuda R, Iwaya M, Tekeuchi T, Kamiyama S and Akasaki I 2020 Nanomaterials 10 135 [8] Jorgensen K F, Bonef B and Speck J S 2020 J. Cryst. Growth. 546 125738 [9] Myers D J, Espenlaub A C, Gelzinyte K, Young E C, Martinelli L, Peretti J, Weisbuch C and Speck J S 2020 Appl. Phys. Lett. 116 091102 [10] Li H, Hanus R, Polanco C A, Zeidler A, Koblmüller G, Koh Y K and Lindsay L 2020 Phys. Rev. B 102 014313 [11] Storm D F, Growden T A, Cornuelle E M, Peri P R, Osadchy T, Daulton J W, Zhang W D, Katzer D S, Hardy M T, Nepal N, Molnar R, Brown E R, Berger P R, Smith D J and Meyer D J 2020 J. Vac. Sci. Technol. B 38 032214 [12] Smorchkova I P, Haus E, Heying B, Kozodoy P, Fini P, Ibbetson J P, Keller S, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 76 718 [13] Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Stat. Sol. (RRL) 1 125 [14] Ivanov S V, Nechaev D V, Sitnikova A A, Ratnikov V V, Yagovkina M A, Rzheutskii N V, Lutsenko E V and Jmerik V N 2014 Semicond. Sci. Technol. 29 084008 [15] Zhang H P, Xue J S, Fu Y R, Yang M, Zhang Y C, Duan X L, Qiang W T, Li L X, Sun Z P, Ma X H, Zhang J C and Hao Y 2020 J. Cryst. Growth 535 125539 [16] Poblenz C, Waltereit P and Speck J S 2005 J. Vac. Sci. Technol. B: Microelectron. Process. Phenom. 23 1379 [17] Koblmüller G, Fernández-Garrido S, Calleja E and Speck J S 2007 Appl. Phys. Lett. 91 161904 [18] McSkimming B M, Wu F, Huault T, Chaix C and Speck J S 2014 J. Cryst. Growth 386 168 [19] Gunning B P, Clinton E A, Merola J J, Doolittle W A and Bresnahan R C 2015 J. Appl. Phys. 118 155302 [20] Tarsa E J, Heying B, Wu X H, Fini P, DenBaars S P and Speck J S 1997 J. Appl. Phys. 82 5472 [21] Heying B, Averbeck R, Chen L F, Haus E, Riechert H and Speck J S 2000 J. Appl. Phys. 88 1855 [22] Koblmüller G, Averbeck R, Riechert H and Pongratz P 2004 Phys. Rev. B 69 035325 [23] VanMil B L, Guo H C, Holbert L J, Lee K, Myers T H, Liu T and Korakakis D 2004 J. Vac. Sci. Technol. B 22 2149 [24] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Appl. Phys. Lett. 86 041908 [25] Heying B, Tarsa E J, Elsass C R, Fini P, DenBaars S P and Speck J S 1999 J. Appl. Phys. 85 6470 [26] Adelmann C, Brault J, Jalabert D, Gentile P, Mariette H, Mula G and Daudin B 2002 J. Appl. Phys. 91 9638 [27] Tsai J K, Lo I, Chuang K L, Tu L W, Huang J H, Hsieh C H and Hsieh K Y 2004 J. Appl. Phys. 95 460 [28] Zywietz T, Neugebauer J and Scheffler M 1998 Appl. Phys. Lett. 73 487 [29] Neugebauer J, Zywietz T K, Scheffler M, Northrup J E, Chen H and Feenstra R M 2003 Phys. Rev. Lett. 90 056101 [30] Wang X Q and Yoshikawa A 2004 Prog. Cryst. Growth Charact. Mater. 48/49 42 [31] Choi S J, Kim T H, Brown A, Everitt H O, Losurdo M, Bruno G and Moto A 2006 Appl. Phys. Lett. 89 181915 [32] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Jpn. J. Appl. Phys. 44 L906 [33] Oehler F, Zhu T, Rhode S, Kappers M J, Humphreys C J and Oliver R A 2013 J. Cryst. Growth 383 12 [34] Armitage R, Hong W, Yang Q, Feick H, Gebauer J, Weber E R, Hautakangas S and Saarinen K 2003 Appl. Phys. Lett. 82 3457 [35] Lyons J L, Janotti A and Van de Walle C G 2010 Appl. Phys. Lett. 97 152108 [36] Li S T, Jiang F Y, Fan G H, Wang L, Xiong C B, Peng X X and Mo H L 2004 J. Lumin. 106 219 [37] Demchenko D O, Diallo I C and Reshchikov M A 2016 J. Appl. Phys. 119 035702 [38] Reshchikov M A 2019 Appl. Phys. Lett. 115 262102 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|