Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018102    DOI: 10.1088/1674-1056/ac339d

Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties

Zhen-Hua Li(李振华)1,2, Peng-Fei Shao(邵鹏飞)1, Gen-Jun Shi(施根俊)1, Yao-Zheng Wu(吴耀政)1, Zheng-Peng Wang(汪正鹏)1, Si-Qi Li(李思琦)1, Dong-Qi Zhang(张东祺)1, Tao Tao(陶涛)1, Qing-Jun Xu(徐庆君)3, Zi-Li Xie(谢自力)1, Jian-Dong Ye(叶建东)1, Dun-Jun Chen(陈敦军)1, Bin Liu(刘斌)1,†, Ke Wang(王科)1,‡, You-Dou Zheng(郑有炓)1, and Rong Zhang(张荣)1,4
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, China;
2 College of Optoelectronics Engineering, Zaozhuang University, Zaozhuang 277160, China;
3 Institute of Novel Semiconductors, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China;
4 Xiamen University, Xiamen 361005, China
Abstract  A systematic investigation on PA-MBE grown GaN with low growth rates (less than 0.2 μm/h) has been conducted in a wide growth temperature range, in order to guide future growth of sophisticated fine structures for quantum device applications. Similar to usual growths with higher growth rates, three growth regions have been revealed, namely, Ga droplets, slightly Ga-rich and N-rich 3D growth regions. The slightly Ga-rich region is preferred, in which GaN epilayers demonstrate optimal crystalline quality, which has been demonstrated by streaky RHEED patterns, atomic smooth surface morphology, and very low defect related yellow and blue luminescence bands. The growth temperature is a critical parameter to obtain high quality materials and the optimal growth temperature window (~ 700-760 ℃) has been identified. The growth rate shows a strong dependence on growth temperatures in the optimal temperature window, and attention must be paid when growing fine structures at a low growth rate. Mg and Si doped GaN were also studied, and both p- and n-type materials were obtained.
Keywords:  GaN      molecular beam epitaxy (MBE)      low growth rate      growth diagram  
Received:  23 August 2021      Revised:  18 October 2021      Accepted manuscript online:  27 October 2021
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074077, 61921005, 61974062, and 61974065), the Fundamental Research Funds for the Central Universities, China (Grant No. 14380166), Key R&D Program of Jiangsu Province, China (Grant No. BE2020004-3), the National Key R&D Program of China (Grant No. 2017YFB0404101), Nature Science Foundation of Jiangsu Province, China (Grant No. BE2015111), Collaborative Innovation Center of Solid State Lighting and Energysaving Electronics.
Corresponding Authors:  Bin Liu, Ke Wang     E-mail:;

Cite this article: 

Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣) Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties 2022 Chin. Phys. B 31 018102

[1] Akasaki I, Amano H and Nakamura S 2014 R. Swed. Acad. Sci. Nobel Prize Phys.
[2] Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D: Appl. Phys. 51 163001
[3] Zhang Y, Dadgar A and Palacios T 2018 J. Phys. D: Appl. Phys. 51 273001
[4] Khoury M, Li H, Li P, Chow Y C, Bonef B, Zhang H, Wong M S, Pinna S, Song J, Choi J, Speck J S, Nakamura S and DenBaars S P 2020 Nano Energy 67 104236
[5] Zhang H J, Li H J, Li P P, Song J, Speck J S, Nakamura S and DenBaars S P 2020 ACS Photon. 7 1662
[6] Lu W F, Goto N, Murakami H, Sone N, Iida K, Terazawa M, Han, D P, Iwaya M, Tekeuchi T, Kamiyama S and Akasaki I 2020 Appl. Surf. Sci. 509 145271
[7] Ito K, Lu W F, Sone N, Miyamoto Y, Okuda R, Iwaya M, Tekeuchi T, Kamiyama S and Akasaki I 2020 Nanomaterials 10 135
[8] Jorgensen K F, Bonef B and Speck J S 2020 J. Cryst. Growth. 546 125738
[9] Myers D J, Espenlaub A C, Gelzinyte K, Young E C, Martinelli L, Peretti J, Weisbuch C and Speck J S 2020 Appl. Phys. Lett. 116 091102
[10] Li H, Hanus R, Polanco C A, Zeidler A, Koblmüller G, Koh Y K and Lindsay L 2020 Phys. Rev. B 102 014313
[11] Storm D F, Growden T A, Cornuelle E M, Peri P R, Osadchy T, Daulton J W, Zhang W D, Katzer D S, Hardy M T, Nepal N, Molnar R, Brown E R, Berger P R, Smith D J and Meyer D J 2020 J. Vac. Sci. Technol. B 38 032214
[12] Smorchkova I P, Haus E, Heying B, Kozodoy P, Fini P, Ibbetson J P, Keller S, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 76 718
[13] Kim K C, Schmidt M C, Sato H, Wu F, Fellows N, Saito M, Fujito K, Speck J S, Nakamura S and DenBaars S P 2007 Phys. Stat. Sol. (RRL) 1 125
[14] Ivanov S V, Nechaev D V, Sitnikova A A, Ratnikov V V, Yagovkina M A, Rzheutskii N V, Lutsenko E V and Jmerik V N 2014 Semicond. Sci. Technol. 29 084008
[15] Zhang H P, Xue J S, Fu Y R, Yang M, Zhang Y C, Duan X L, Qiang W T, Li L X, Sun Z P, Ma X H, Zhang J C and Hao Y 2020 J. Cryst. Growth 535 125539
[16] Poblenz C, Waltereit P and Speck J S 2005 J. Vac. Sci. Technol. B: Microelectron. Process. Phenom. 23 1379
[17] Koblmüller G, Fernández-Garrido S, Calleja E and Speck J S 2007 Appl. Phys. Lett. 91 161904
[18] McSkimming B M, Wu F, Huault T, Chaix C and Speck J S 2014 J. Cryst. Growth 386 168
[19] Gunning B P, Clinton E A, Merola J J, Doolittle W A and Bresnahan R C 2015 J. Appl. Phys. 118 155302
[20] Tarsa E J, Heying B, Wu X H, Fini P, DenBaars S P and Speck J S 1997 J. Appl. Phys. 82 5472
[21] Heying B, Averbeck R, Chen L F, Haus E, Riechert H and Speck J S 2000 J. Appl. Phys. 88 1855
[22] Koblmüller G, Averbeck R, Riechert H and Pongratz P 2004 Phys. Rev. B 69 035325
[23] VanMil B L, Guo H C, Holbert L J, Lee K, Myers T H, Liu T and Korakakis D 2004 J. Vac. Sci. Technol. B 22 2149
[24] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Appl. Phys. Lett. 86 041908
[25] Heying B, Tarsa E J, Elsass C R, Fini P, DenBaars S P and Speck J S 1999 J. Appl. Phys. 85 6470
[26] Adelmann C, Brault J, Jalabert D, Gentile P, Mariette H, Mula G and Daudin B 2002 J. Appl. Phys. 91 9638
[27] Tsai J K, Lo I, Chuang K L, Tu L W, Huang J H, Hsieh C H and Hsieh K Y 2004 J. Appl. Phys. 95 460
[28] Zywietz T, Neugebauer J and Scheffler M 1998 Appl. Phys. Lett. 73 487
[29] Neugebauer J, Zywietz T K, Scheffler M, Northrup J E, Chen H and Feenstra R M 2003 Phys. Rev. Lett. 90 056101
[30] Wang X Q and Yoshikawa A 2004 Prog. Cryst. Growth Charact. Mater. 48/49 42
[31] Choi S J, Kim T H, Brown A, Everitt H O, Losurdo M, Bruno G and Moto A 2006 Appl. Phys. Lett. 89 181915
[32] Koblmüller G, Brown J, Averbeck R, Riechert H, Pongratz P and Speck J S 2005 Jpn. J. Appl. Phys. 44 L906
[33] Oehler F, Zhu T, Rhode S, Kappers M J, Humphreys C J and Oliver R A 2013 J. Cryst. Growth 383 12
[34] Armitage R, Hong W, Yang Q, Feick H, Gebauer J, Weber E R, Hautakangas S and Saarinen K 2003 Appl. Phys. Lett. 82 3457
[35] Lyons J L, Janotti A and Van de Walle C G 2010 Appl. Phys. Lett. 97 152108
[36] Li S T, Jiang F Y, Fan G H, Wang L, Xiong C B, Peng X X and Mo H L 2004 J. Lumin. 106 219
[37] Demchenko D O, Diallo I C and Reshchikov M A 2016 J. Appl. Phys. 119 035702
[38] Reshchikov M A 2019 Appl. Phys. Lett. 115 262102
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!