1 Key Laboratory of Artificial Structures and Quantum Control(Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 3 Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract We reveal the electronic structure in YbCd2Sb2, a thermoelectric material, by angle-resolved photoemission spectroscopy (ARPES) and time-resolved ARPES (trARPES). Specifically, three bulk bands at the vicinity of the Fermi level are evidenced near the Brillouin zone center, consistent with the density functional theory (DFT) calculation. It is interesting that the spin-unpolarized bulk bands respond unexpectedly to right- and left-handed circularly polarized probe. In addition, a hole band of surface states, which is not sensitive to the polarization of the probe beam and is not expected from the DFT calculation, is identified. We find that the non-equilibrium quasiparticle recovery rate is much smaller in the surface states than that of the bulk states. Our results demonstrate that the surface states can be distinguished from the bulk ones from a view of time scale in the nonequilibrium physics.
Fund: W.T.Z. acknowledges support from the National Natural Science Foundation of China (Grant No. 11974243) and additional support from a Shanghai talent program. W.L. acknowledges support from the National Natural Science Foundation of China (Grant No. 11521404). Y.F.G. acknowledges the support by the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1443300).
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛) Determination of the surface states from the ultrafast electronic states in a thermoelectric material 2022 Chin. Phys. B 31 027902
[1] Sobota J A, He Y and Shen Z X 2021 Rev. Mod. Phys.93 025006 [2] Zhou X J, He S L, Liu G D, Zhao L, Yu L and Zhang W T 2018 Reports on Progress in Physics81 062101 [3] LaShell S, McDougall B A and Jensen E 1996 Phys. Rev. Lett.77 3419 [4] Tamai A, Meevasana W, King P D C, Nicholson C W, de la Torre A, Rozbicki E and Baumberger F 2013 Phys. Rev. B87 075113 [5] Damascelli A, Lu D H, Shen K M, Armitage N P, Ronning F, Feng D L, Kim C, Shen Z X, Kimura T, Tokura Y, Mao Z Q and Macno Y 2000 Phys. Rev. Lett.85 5194 [6] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature452 970 [7] Chen Y 2012 Frontiers of Physics7 175 [8] Lugovskoy A V and Bray I 1999 Phys. Rev. B60 3279 [9] Kampfrath T, Perfetti L, Schapper F, Frischkorn C and Wolf M 2005 Phys. Rev. Lett.95 187403 [10] Carbone F Yang D S, Giannini E and Zewail A H 2008 Proc. Natl. Acad. Sci. USA105 20161 [11] Wang X J, Tang M B, Chen H H, Yang X X, Zhao J T, Burkhardt and Grin Y 2009 Appl. Phys. Lett.94 092106 [12] Cao Q G, Zhang H, Tang M B, Chen H H, Yang X X, Grin Y and Zhao J T 2010 J. Appl. Phys.107 053714 [13] Feng J H, Wang W, Huang S, Jiang B B, Zhu B, Zhou Y, Cui J, Lin P J, Xie L and He J Q 2021 ACS Applied Energy Materials4 913 [14] Artmann A, Mewis A, Poepke M and Michels G 1996 Zeitchrift fur Anorganische und Allgemeine Chemie622 679 [15] Su H, Gong B C, Shi W J, et al. 2020 APL Materials8 011109 [16] Yang Y, Tang T, Duan S, Zhou C, Hao D and Zhang W 2019 Rev. Sci. Instruments90 063905 [17] Kohn W and Sham L J 1965 Phys. Rev.140 A1133 [18] Hohenberg and Kohn W 1964 Phys. Rev.136 B864 [19] Kresse G and Furthmüller 1996 Phys. Rev. B54 11169 [20] Blöchl P E 1994 Phys. Rev. B50 17953 [21] Sobota J A, Yang S, Analytis J G, Chen Y L, Fisher I R, Kirchmann P S and Shen Z X 2012 Phys. Rev. Lett.108 117403 [22] Park S R, Han J, Kim C, Koh Y Y, Kim C, Lee H, Choi H J, Han J H, Lee K D, Hur N J, Arita M, Shimada K, Namatame H, Taniguchi M 2012 Phys. Rev. Lett.108 046805 [23] Wag Y H and Gedik N 2013 Physica Status Solidi-Rapid Research Letters7 64 [24] Jozwiak C, Park C H, Gotlieb K, Hwang C, Lee D H, Louie S G, Denlinger J D, Rotundu C R, Birgeneau R J, Hussain Z and Lanzara A 2013 Nat. Phys.9 293 [25] Moser S 2017 Journal of Electron Spectroscopy and Related Phenomena214 29 [26] Borisenko S V, Kordyuk A A, Koitzsch A, Kim T K, Nenkov K A, Knupfer M, Fink J, Grazioli C, Turchini S and Berger H 2004 Phys. Rev. Lett.92 207001 [27] Arpiainen V, Bansil A and Lindroos M 2009 Phys. Rev. Lett.1030 067005 [28] Lindroos M, Arpiainen V and Bansil A 2010 Phys. Rev. Lett.105 189702
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.