Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126804    DOI: 10.1088/1674-1056/aca6d3
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Molecular beam epitaxy growth of quantum devices

Ke He(何珂)1,2,3,†
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Frontier Science Center for Quantum Information, Beijing 100084, China;
3 Beijing Institute of Quantum Information Science, Beijing 100193, China
Abstract  The inherent fragility and surface/interface-sensitivity of quantum devices demand fabrication techniques under very clean environment. Here, I briefly introduces several techniques based on molecular beam epitaxy growth on pre-patterned substrates which enable us to directly prepare in-plane nanostructures and heterostructures in ultrahigh vacuum. The molecular beam epitaxy-based fabrication techniques are especially useful in constructing the high-quality devices and circuits for solid-state quantum computing in a scalable way.
Keywords:  molecular beam epitaxy      fabrication      ultrahigh vacuum      quantum computation  
Received:  05 August 2022      Revised:  11 November 2022      Accepted manuscript online:  29 November 2022
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  68.55.-a (Thin film structure and morphology)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92065206).
Corresponding Authors:  Ke He     E-mail:  kehe@tsinghua.edu.cn

Cite this article: 

Ke He(何珂) Molecular beam epitaxy growth of quantum devices 2022 Chin. Phys. B 31 126804

[1] Kroemer H 2001 Rev. Mod. Phys. 73 783
[2] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[3] Ge C H, Li H L, Zhu X L and Pan A L 2017 Chin. Phys. B 26 034208
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Heinini M 2018 Molecular Beam Epitaxy From Research to Mass Production (Elsevier)
[7] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[8] Qin Z H 2013 Chin. Phys. B 22 098108
[9] Krizek F, Sestoft J E, Aseev P, Marti-Sanchez S, Vaitiekėnas S, Casparis L, Khan S A, Liu Y, Stankevič T, Whiticar A M, Fursina A, Boekhout F, Koops R, Uccelli E, Kouwenhoven L P, Marcus C M, Arbiol J and Krogstrup P 2018 Phys. Rev. Materials 2 093401
[10] Vaitiekėnas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrom C J, Marti-Sanchez S, Arbiol J, Krogstrup P, Casparis L and Marcus C M 2018 Phys. Rev. Lett. 121 147701
[11] Friedl M, Cerveny K, Weigele P, Tütüncüoglu G, Martí-Sánchez S, Huang C, Patlatiuk T, Potts H, Sun Z, Hill M O, Güniat L, Kim W, Zamani M, Dubrovskii V G, Arbiol J, Lauhon L J, Zumbühl D M and Fontcuberta I Morral A 2018 Nano Lett. 18 2666
[12] Lee J S, Choi S, Pendharkar M, Pennachio D J, Markman B, Seas M, Koelling S, Verheijen M A, Casparis L, Petersson K D, Petkovic I, Schaller V, Rodwell M J W, Marcus C M, Krogstrup P, Kouwenhoven L P, Bakkers E P A M and Palmstrom C J 2019 Phys. Rev. Materials 3 084606
[13] Aseev P, Fursina A, Boekhout F, Krizek F, Sestoft J E, Borsoi F, Heedt S, Wang G, Binci L, Martí-Sánchez S, Swoboda T, Koops R, Uccelli E, Arbiol J, Krogstrup P, Kouwenhoven L P and Caroff P 2019 Nano Lett. 19 218
[14] Desplanque L, Bucamp A, Troadec D, Patriarche G and Wallart X 2018 Nanotechnology 29 305705
[15] Op het Veld R L M, Xu D, Schaller V, Verheijen M A, Peters S M E, Jung J, Tong C, Wang Q, de Moor M W A, Hesselmann B, Vermeulen K, Bommer J D S, Sue Lee J, Sarikov A, Pendharkar M, Marzegalli A, Koelling S, Kouwenhoven L P, Miglio L, Palmstrom C J, Zhang H and Bakkers E P A M 2020 Commun. Phys. 3 59
[16] Jung J, Op het Veld R L M, Benoist R, Molen O A H, Manders C, Verheijen M A and Bakkers E P A M 2021 Adv. Funct. Mater. 31 2103062
[17] Schüffelgen P, Rosenbach D, Li C, Schmitt T W, Schleenvoigt M, Jalil A R, Schmitt S, Kölzer J, Wang M, Bennemann B, Parlak U, Kibkalo L, Trellenkamp S, Grap T, Meertens D, Luysberg M, Mussler G, Berenschot E, Tas N, Golubov A A, Brinkman A, Schäpers T and Grützmacher D 2019 Nat. Nanotechnol. 14 825
[18] Yuan X, Pan D, Zhou Y, Zhang X, Peng K, Zhao B, Deng M, He J, Tan H H and Jagadish C 2021 Appl. Phys. Rev. 8 021302
[19] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[20] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[21] Plugge S, Rasmussen A, Egger R and Flensberg K 2017 New J. Phys. 19 012001
[22] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305
[23] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52
[24] Aguado R and Kouwenhoven L P 2020 Physics Today 73 44
[25] Cao Z, Chen S, Zhang G and Liu D E 2022 arXiv: 2206.06916
[26] Joyce B D and Baldrey J A 1962 Nature 195 485
[27] Yang W Y, Li Y J, Meng F Y, Yu H Y, Wang M Q, Wang P F, Luo G Z, Zhou X L and Pan J Q 2020 J. Semicond. 40 101305
[28] Cao Z, Liu D E, He W-X, Liu X, He K and Zhang H 2022 Phys. Rev. B 105 085424
[29] Jiang Y, Yang S, Li L, Song W, Miao W, Tong B, Geng Z, Gao Y, Li R, Chen F, Zhang Q, Meng F, Gu L, Zhu K, Zang Y, Shang R, Cao Z, Feng X, Xue Q-K, Liu D E, Zhang H and He K 2022 Phys. Rev. Materials 6 034205
[30] Geng Z, Zhang Z, Chen F, Yang S, Jiang Y, Gao Y, Tong B, Song W, Miao W, Li R, Wang Y, Zhang Q, Meng F, Gu L, Zhu K, Zang Y, Li L, Shang R, Feng X, Xue Q K, He K and Zhang H 2022 Phys. Rev. B 105 L241112
[31] Kiczynski M, Gorman S K, Geng H, Donnelly M B, Chung Y, He Y, Keizer J G and Simmons M Y 2022 Nature 606 694
[32] Rueß F J, Pok W, Reusch T C G, Butcher M J, Goh K E J, Oberbeck L, Scappucci G, Hamilton A R and Simmons M Y 2007 Small 3 563
[33] Dolan G J 1977 Appl. Phys. Lett. 31 337
[34] Carrad D J, Bjergfelt M, Kanne T, Aagesen M, Krizek F, Fiordaliso E M, Johnson E, Nygård J and Jespersen T S 2020 Adv. Mater. 32 1908411
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[3] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[4] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[8] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[9] Dynamic vortex Mott transition in triangular superconducting arrays
Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2022, 31(3): 037404.
[10] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[11] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[12] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[13] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[14] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[15] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
No Suggested Reading articles found!