Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Molecular beam epitaxy growth of quantum devices |
Ke He(何珂)1,2,3,† |
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 Frontier Science Center for Quantum Information, Beijing 100084, China; 3 Beijing Institute of Quantum Information Science, Beijing 100193, China |
|
|
Abstract The inherent fragility and surface/interface-sensitivity of quantum devices demand fabrication techniques under very clean environment. Here, I briefly introduces several techniques based on molecular beam epitaxy growth on pre-patterned substrates which enable us to directly prepare in-plane nanostructures and heterostructures in ultrahigh vacuum. The molecular beam epitaxy-based fabrication techniques are especially useful in constructing the high-quality devices and circuits for solid-state quantum computing in a scalable way.
|
Received: 05 August 2022
Revised: 11 November 2022
Accepted manuscript online: 29 November 2022
|
PACS:
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92065206). |
Corresponding Authors:
Ke He
E-mail: kehe@tsinghua.edu.cn
|
Cite this article:
Ke He(何珂) Molecular beam epitaxy growth of quantum devices 2022 Chin. Phys. B 31 126804
|
[1] Kroemer H 2001 Rev. Mod. Phys. 73 783 [2] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768 [3] Ge C H, Li H L, Zhu X L and Pan A L 2017 Chin. Phys. B 26 034208 [4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [6] Heinini M 2018 Molecular Beam Epitaxy From Research to Mass Production (Elsevier) [7] Barth J V, Costantini G and Kern K 2005 Nature 437 671 [8] Qin Z H 2013 Chin. Phys. B 22 098108 [9] Krizek F, Sestoft J E, Aseev P, Marti-Sanchez S, Vaitiekėnas S, Casparis L, Khan S A, Liu Y, Stankevič T, Whiticar A M, Fursina A, Boekhout F, Koops R, Uccelli E, Kouwenhoven L P, Marcus C M, Arbiol J and Krogstrup P 2018 Phys. Rev. Materials 2 093401 [10] Vaitiekėnas S, Whiticar A M, Deng M T, Krizek F, Sestoft J E, Palmstrom C J, Marti-Sanchez S, Arbiol J, Krogstrup P, Casparis L and Marcus C M 2018 Phys. Rev. Lett. 121 147701 [11] Friedl M, Cerveny K, Weigele P, Tütüncüoglu G, Martí-Sánchez S, Huang C, Patlatiuk T, Potts H, Sun Z, Hill M O, Güniat L, Kim W, Zamani M, Dubrovskii V G, Arbiol J, Lauhon L J, Zumbühl D M and Fontcuberta I Morral A 2018 Nano Lett. 18 2666 [12] Lee J S, Choi S, Pendharkar M, Pennachio D J, Markman B, Seas M, Koelling S, Verheijen M A, Casparis L, Petersson K D, Petkovic I, Schaller V, Rodwell M J W, Marcus C M, Krogstrup P, Kouwenhoven L P, Bakkers E P A M and Palmstrom C J 2019 Phys. Rev. Materials 3 084606 [13] Aseev P, Fursina A, Boekhout F, Krizek F, Sestoft J E, Borsoi F, Heedt S, Wang G, Binci L, Martí-Sánchez S, Swoboda T, Koops R, Uccelli E, Arbiol J, Krogstrup P, Kouwenhoven L P and Caroff P 2019 Nano Lett. 19 218 [14] Desplanque L, Bucamp A, Troadec D, Patriarche G and Wallart X 2018 Nanotechnology 29 305705 [15] Op het Veld R L M, Xu D, Schaller V, Verheijen M A, Peters S M E, Jung J, Tong C, Wang Q, de Moor M W A, Hesselmann B, Vermeulen K, Bommer J D S, Sue Lee J, Sarikov A, Pendharkar M, Marzegalli A, Koelling S, Kouwenhoven L P, Miglio L, Palmstrom C J, Zhang H and Bakkers E P A M 2020 Commun. Phys. 3 59 [16] Jung J, Op het Veld R L M, Benoist R, Molen O A H, Manders C, Verheijen M A and Bakkers E P A M 2021 Adv. Funct. Mater. 31 2103062 [17] Schüffelgen P, Rosenbach D, Li C, Schmitt T W, Schleenvoigt M, Jalil A R, Schmitt S, Kölzer J, Wang M, Bennemann B, Parlak U, Kibkalo L, Trellenkamp S, Grap T, Meertens D, Luysberg M, Mussler G, Berenschot E, Tas N, Golubov A A, Brinkman A, Schäpers T and Grützmacher D 2019 Nat. Nanotechnol. 14 825 [18] Yuan X, Pan D, Zhou Y, Zhang X, Peng K, Zhao B, Deng M, He J, Tan H H and Jagadish C 2021 Appl. Phys. Rev. 8 021302 [19] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001 [20] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002 [21] Plugge S, Rasmussen A, Egger R and Flensberg K 2017 New J. Phys. 19 012001 [22] Karzig T, Knapp C, Lutchyn R M, Bonderson P, Hastings M B, Nayak C, Alicea J, Flensberg K, Plugge S, Oreg Y, Marcus C M and Freedman M H 2017 Phys. Rev. B 95 235305 [23] Lutchyn R M, Bakkers E P A M, Kouwenhoven L P, Krogstrup P, Marcus C M and Oreg Y 2018 Nat. Rev. Mater. 3 52 [24] Aguado R and Kouwenhoven L P 2020 Physics Today 73 44 [25] Cao Z, Chen S, Zhang G and Liu D E 2022 arXiv: 2206.06916 [26] Joyce B D and Baldrey J A 1962 Nature 195 485 [27] Yang W Y, Li Y J, Meng F Y, Yu H Y, Wang M Q, Wang P F, Luo G Z, Zhou X L and Pan J Q 2020 J. Semicond. 40 101305 [28] Cao Z, Liu D E, He W-X, Liu X, He K and Zhang H 2022 Phys. Rev. B 105 085424 [29] Jiang Y, Yang S, Li L, Song W, Miao W, Tong B, Geng Z, Gao Y, Li R, Chen F, Zhang Q, Meng F, Gu L, Zhu K, Zang Y, Shang R, Cao Z, Feng X, Xue Q-K, Liu D E, Zhang H and He K 2022 Phys. Rev. Materials 6 034205 [30] Geng Z, Zhang Z, Chen F, Yang S, Jiang Y, Gao Y, Tong B, Song W, Miao W, Li R, Wang Y, Zhang Q, Meng F, Gu L, Zhu K, Zang Y, Li L, Shang R, Feng X, Xue Q K, He K and Zhang H 2022 Phys. Rev. B 105 L241112 [31] Kiczynski M, Gorman S K, Geng H, Donnelly M B, Chung Y, He Y, Keizer J G and Simmons M Y 2022 Nature 606 694 [32] Rueß F J, Pok W, Reusch T C G, Butcher M J, Goh K E J, Oberbeck L, Scappucci G, Hamilton A R and Simmons M Y 2007 Small 3 563 [33] Dolan G J 1977 Appl. Phys. Lett. 31 337 [34] Carrad D J, Bjergfelt M, Kanne T, Aagesen M, Krizek F, Fiordaliso E M, Johnson E, Nygård J and Jespersen T S 2020 Adv. Mater. 32 1908411 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|