Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 107301    DOI: 10.1088/1674-1056/ac5c3e
Special Issue: SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
SPECIAL TOPIC—Fabrication and manipulation of the second-generation quantum systems Prev   Next  

Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film

Junyu Zong(宗君宇)1, Yang Xie(谢阳)1, Qinghao Meng(孟庆豪)1, Qichao Tian(田启超)1, Wang Chen(陈望)1, Xuedong Xie(谢学栋)1, Shaoen Jin(靳少恩)1, Yongheng Zhang(张永衡)1, Li Wang(王利)2, Wei Ren(任伟)2, Jian Shen(沈健)2, Aixi Chen(陈爱喜)2, Pengdong Wang(王鹏栋)2, Fang-Sen Li(李坊森)2, Zhaoyang Dong(董召阳)3, Can Wang(王灿)1,4, Jian-Xin Li(李建新)1,4,†, and Yi Zhang(张翼)1,4,‡
1. National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China;
2. Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China;
3. Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
4. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.
Keywords:  charge density waves      VSe2      band structures      STM      ARPES  
Received:  15 January 2022      Revised:  26 February 2022      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.20.At (Surface states, band structure, electron density of states)  
  73.61.-r (Electrical properties of specific thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92165205, 11790311, 12004172, 11774152, 11604366, and 11634007), the National Key Research and Development Program of China (Grant Nos. 2018YFA0306800 and 2016YFA0300401), the Program of High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province, the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z172), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK 20160397).
Corresponding Authors:  Jian-Xin Li, Yi Zhang     E-mail:  jxli@nju.edu.cn;zhangyi@nju.edu.cn

Cite this article: 

Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼) Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film 2022 Chin. Phys. B 31 107301

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H and Guo Z Y 2020 J. Mater. Chem. C 8 387
[3] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[5] Butler S Z, Hollen S M, Cao L, et al. 2013 ACS Nano 7 2898
[6] Kumar A and Ahluwalia P K 2012 Euro. Phys. J. B 85 186
[7] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[8] Ugeda M M, Bradley A J, Shi S F, Da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091
[9] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92
[10] Xi X X, Zhao L, Wang Z F, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
[11] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[12] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[13] He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605
[14] Tang S, Zhang C, Wong D, et al. 2017 Nat. Phys. 13 683
[15] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003
[16] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76
[17] Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943
[18] Ryu H, Chen Y, Kim H, Tsai H Z, Tang S J, Jiang J, Liou F, Kahn S, Jia C H, Omrani A A, Shim J H, Hussain Z, Shen Z X, Kim K, Min B I, Hwang C, Crommie M F and Mo S K 2019 Nano Lett. 19 626
[19] Campi D, Bernasconi M and Benedek G 2012 Phys. Rev. B 86 075446
[20] Yu S J, Zhang J T, Tang Y and Ouyang M 2015 Nano Lett. 15 6282
[21] Lee H 2016 J. Electron. Mater. 45 1115
[22] Rossnagel K 2011 J. Phys.: Condens. Matter 23 213001
[23] Chen C W, Choe J and Morosan E 2016 Rep. Prog. Phys. 79 084505
[24] Eaglesham D J, Withers R L and Bird D M 1986 J. Phys. C-Solid State Phys. 19 359
[25] Jolie W, Knispel T, Ehlen N, Nikonov K, Busse C, Gruneis A and Michely T 2019 Phys. Rev. B 99 115417
[26] Strocov V N, Shi M, Kobayashi M, Monney C, Wang X, Krempasky J, Schmitt T, Patthey L, Berger H and Blaha P 2012 Phys. Rev. Lett. 109 086401
[27] Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Ly T T, Kim S, Choi Y H, Jozwiak C, Bostwick A, Rotenberg E, Park J G, Sankar R, Kim K S, Kim J and Chang Y J 2018 Nano Lett. 18 5432
[28] Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L and Wee A T S 2020 Adv. Mater. 32 2000693
[29] Chua R, Henke J, Saha S, Huang Y L, Gou J, He X, Das T, Wezel J V, Soumyanarayanan A and Wee A T S 2022 ACS Nano 16 783
[30] Feng J G, Biswas D, Rajan A, et al. 2018 Nano Lett. 18 4493
[31] Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2018 Phys. Rev. Lett. 121 196402
[32] Umemoto Y, Sugawara K, Nakata Y, Takahashi T and Sato T 2019 Nano Res. 12 165
[33] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.: Condens. Matter 25 095002
[34] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147
[37] Chen W, Xie X, Zong J, Chen T, Lin D, Yu F, Jin S, Zhou L, Zou J, Sun J, Xi X and Zhang Y 2019 Sci. Rep. 9 2685
[38] Xie X, Ding Y, Zong J, Chen W, Zou J, Zhang H, Wang C and Zhang Y 2020 Appl. Phys. Lett. 116 193101
[39] Hovden R, Tsen A W, Liu P, Savitzky B H, El Baggari I, Liu Y, Lu W, Sun Y, Kim P, Pasupathy A N and Kourkoutis L F 2016 Proc. Nat. Acade. Sci. 113 11420
[40] Lim S, Kim J, Won C and Cheong S W 2020 Nano Lett. 20 4801
[41] Nakatsugawa K, Tanda S and Ikeda T N 2020 Sci. Rep. 10 1239
[42] Yang H X, Cai Y, Ma C, Li J, Long Y J, Chen G F, Tian H F, Wei L L and Li J Q 2016 Europhys. Lett. 114 67002
[43] Fang A, Ru N, Fisher I R and Kapitulnik A 2007 Phys. Rev. Lett. 99 046401
[44] Gweon G H, Denlinger J D, Clack J A, Allen J W, Olson C G, Dimasi E, Aronson M C, Foran B and Lee S 1998 Phys. Rev. Lett. 81 886
[45] Shi Z, Kuhn S J, Flicker F, Helm T, Lee J, Steinhardt W, Dissanayake S, Graf D, Ruff J, Fabbris G, Haskel D and Haravifard S 2020 Phys. Rev. Res. 2 042042
[46] Lee J, Nagao M, Mizuguchi Y and Ruff J 2021 Phys. Rev. B 103 245120
[47] Miao H, Fumagalli R, Rossi M, Lorenzana J, Seibold G, Yakhou-Harris F, Kummer K, Brookes N B, Gu G D, Braicovich L, Ghiringhelli G and Dean M P M 2019 Phys. Rev. X 9 031042
[48] Chen W, Hu M, Zong J, Xie X, Meng Q, Yu F, Wang L, Ren W, Chen A, Liu G, Xi X, Li F-S, Sun J, Liu J and Zhang Y 2021 Adv. Mater. 33 2004930
[49] Cudazzo P, Gatti M and Rubio A 2014 Phys. Rev. B 90 205128
[50] Jang I, Duvjir G, Choi B K, Kim J, Chang Y J and Kim K S 2019 Phys. Rev. B 99 014106
[51] Norman M R, Randeira M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093
[52] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 101 235405
[1] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[2] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[3] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[4] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[5] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[6] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[7] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[8] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[9] Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy
Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2021, 30(6): 067403.
[10] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[11] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[12] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[13] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[14] Tilt adjustment for a portable absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(7): 073701.
[15] STM study of selenium adsorption on Au(111) surface
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东). Chin. Phys. B, 2020, 29(5): 056801.
No Suggested Reading articles found!