Special Issue:
SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
|
SPECIAL TOPIC—Fabrication and manipulation of the second-generation quantum systems |
Prev
Next
|
|
|
Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film |
Junyu Zong(宗君宇)1, Yang Xie(谢阳)1, Qinghao Meng(孟庆豪)1, Qichao Tian(田启超)1, Wang Chen(陈望)1, Xuedong Xie(谢学栋)1, Shaoen Jin(靳少恩)1, Yongheng Zhang(张永衡)1, Li Wang(王利)2, Wei Ren(任伟)2, Jian Shen(沈健)2, Aixi Chen(陈爱喜)2, Pengdong Wang(王鹏栋)2, Fang-Sen Li(李坊森)2, Zhaoyang Dong(董召阳)3, Can Wang(王灿)1,4, Jian-Xin Li(李建新)1,4,†, and Yi Zhang(张翼)1,4,‡ |
1. National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China; 2. Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China; 3. Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China; 4. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.
|
Received: 15 January 2022
Revised: 26 February 2022
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92165205, 11790311, 12004172, 11774152, 11604366, and 11634007), the National Key Research and Development Program of China (Grant Nos. 2018YFA0306800 and 2016YFA0300401), the Program of High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province, the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z172), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK 20160397). |
Corresponding Authors:
Jian-Xin Li, Yi Zhang
E-mail: jxli@nju.edu.cn;zhangyi@nju.edu.cn
|
Cite this article:
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼) Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film 2022 Chin. Phys. B 31 107301
|
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [2] Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H and Guo Z Y 2020 J. Mater. Chem. C 8 387 [3] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 [4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [5] Butler S Z, Hollen S M, Cao L, et al. 2013 ACS Nano 7 2898 [6] Kumar A and Ahluwalia P K 2012 Euro. Phys. J. B 85 186 [7] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [8] Ugeda M M, Bradley A J, Shi S F, Da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091 [9] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92 [10] Xi X X, Zhao L, Wang Z F, Berger H, Forro L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765 [11] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [12] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402 [13] He S L, He J F, Zhang W H, et al. 2013 Nat. Mater. 12 605 [14] Tang S, Zhang C, Wong D, et al. 2017 Nat. Phys. 13 683 [15] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003 [16] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 [17] Chen P, Chan Y H, Fang X Y, Zhang Y, Chou M Y, Mo S K, Hussain Z, Fedorov A V and Chiang T C 2015 Nat. Commun. 6 8943 [18] Ryu H, Chen Y, Kim H, Tsai H Z, Tang S J, Jiang J, Liou F, Kahn S, Jia C H, Omrani A A, Shim J H, Hussain Z, Shen Z X, Kim K, Min B I, Hwang C, Crommie M F and Mo S K 2019 Nano Lett. 19 626 [19] Campi D, Bernasconi M and Benedek G 2012 Phys. Rev. B 86 075446 [20] Yu S J, Zhang J T, Tang Y and Ouyang M 2015 Nano Lett. 15 6282 [21] Lee H 2016 J. Electron. Mater. 45 1115 [22] Rossnagel K 2011 J. Phys.: Condens. Matter 23 213001 [23] Chen C W, Choe J and Morosan E 2016 Rep. Prog. Phys. 79 084505 [24] Eaglesham D J, Withers R L and Bird D M 1986 J. Phys. C-Solid State Phys. 19 359 [25] Jolie W, Knispel T, Ehlen N, Nikonov K, Busse C, Gruneis A and Michely T 2019 Phys. Rev. B 99 115417 [26] Strocov V N, Shi M, Kobayashi M, Monney C, Wang X, Krempasky J, Schmitt T, Patthey L, Berger H and Blaha P 2012 Phys. Rev. Lett. 109 086401 [27] Duvjir G, Choi B K, Jang I, Ulstrup S, Kang S, Ly T T, Kim S, Choi Y H, Jozwiak C, Bostwick A, Rotenberg E, Park J G, Sankar R, Kim K S, Kim J and Chang Y J 2018 Nano Lett. 18 5432 [28] Chua R, Yang J, He X, Yu X, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L and Wee A T S 2020 Adv. Mater. 32 2000693 [29] Chua R, Henke J, Saha S, Huang Y L, Gou J, He X, Das T, Wezel J V, Soumyanarayanan A and Wee A T S 2022 ACS Nano 16 783 [30] Feng J G, Biswas D, Rajan A, et al. 2018 Nano Lett. 18 4493 [31] Chen P, Pai W W, Chan Y H, Madhavan V, Chou M Y, Mo S K, Fedorov A V and Chiang T C 2018 Phys. Rev. Lett. 121 196402 [32] Umemoto Y, Sugawara K, Nakata Y, Takahashi T and Sato T 2019 Nano Res. 12 165 [33] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.: Condens. Matter 25 095002 [34] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [36] Esters M, Hennig R G and Johnson D C 2017 Phys. Rev. B 96 235147 [37] Chen W, Xie X, Zong J, Chen T, Lin D, Yu F, Jin S, Zhou L, Zou J, Sun J, Xi X and Zhang Y 2019 Sci. Rep. 9 2685 [38] Xie X, Ding Y, Zong J, Chen W, Zou J, Zhang H, Wang C and Zhang Y 2020 Appl. Phys. Lett. 116 193101 [39] Hovden R, Tsen A W, Liu P, Savitzky B H, El Baggari I, Liu Y, Lu W, Sun Y, Kim P, Pasupathy A N and Kourkoutis L F 2016 Proc. Nat. Acade. Sci. 113 11420 [40] Lim S, Kim J, Won C and Cheong S W 2020 Nano Lett. 20 4801 [41] Nakatsugawa K, Tanda S and Ikeda T N 2020 Sci. Rep. 10 1239 [42] Yang H X, Cai Y, Ma C, Li J, Long Y J, Chen G F, Tian H F, Wei L L and Li J Q 2016 Europhys. Lett. 114 67002 [43] Fang A, Ru N, Fisher I R and Kapitulnik A 2007 Phys. Rev. Lett. 99 046401 [44] Gweon G H, Denlinger J D, Clack J A, Allen J W, Olson C G, Dimasi E, Aronson M C, Foran B and Lee S 1998 Phys. Rev. Lett. 81 886 [45] Shi Z, Kuhn S J, Flicker F, Helm T, Lee J, Steinhardt W, Dissanayake S, Graf D, Ruff J, Fabbris G, Haskel D and Haravifard S 2020 Phys. Rev. Res. 2 042042 [46] Lee J, Nagao M, Mizuguchi Y and Ruff J 2021 Phys. Rev. B 103 245120 [47] Miao H, Fumagalli R, Rossi M, Lorenzana J, Seibold G, Yakhou-Harris F, Kummer K, Brookes N B, Gu G D, Braicovich L, Ghiringhelli G and Dean M P M 2019 Phys. Rev. X 9 031042 [48] Chen W, Hu M, Zong J, Xie X, Meng Q, Yu F, Wang L, Ren W, Chen A, Liu G, Xi X, Li F-S, Sun J, Liu J and Zhang Y 2021 Adv. Mater. 33 2004930 [49] Cudazzo P, Gatti M and Rubio A 2014 Phys. Rev. B 90 205128 [50] Jang I, Duvjir G, Choi B K, Kim J, Chang Y J and Kim K S 2019 Phys. Rev. B 99 014106 [51] Norman M R, Randeira M, Ding H and Campuzano J C 1998 Phys. Rev. B 57 R11093 [52] Si J G, Lu W J, Wu H Y, Lv H Y, Liang X, Li Q J and Sun Y P 2020 Phys. Rev. B 101 235405
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|