CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electric and thermal transport properties of topological insulator candidate LiMgBi |
Hao OuYang(欧阳豪)1,2,†, Qing-Xin Dong(董庆新)1,2,†, Yi-Fei Huang(黄奕飞)1,2, Jun-Sen Xiang(项俊森)1, Li-Bo Zhang(张黎博)1,2, Chen-Sheng Li(李晨圣)1,2, Pei-Jie Sun(孙培杰)1,2,3, Zhi-An Ren(任治安)1,2,3, and Gen-Fu Chen(陈根富)1,2,3,‡ |
1 Institute of Physics, and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We report the transport properties of a topological insulator candidate, LiMgBi. The electric resistivity of the title compound exhibits a metal-to-semiconductor-like transition at around 160 K and tends to saturation below 50 K. At low temperatures, the magnetoresistance is up to ~260% at 9 T and a clear weak antilocalization effect is observed in the low magnetic-field region. The Hall measurement reveals that LiMgBi is a multiband system, where hole-type carriers (nh~1018 cm-3) play a major role in the transport process. Remarkably, LiMgBi possess a large Seebeck coefficient (~440 μV/K) and a moderate thermal conductivity at room temperature, which indicate that LiMgBi is a promising candidate in thermoelectric applications.
|
Received: 27 March 2021
Revised: 29 April 2021
Accepted manuscript online: 13 May 2021
|
PACS:
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300604), the National Natural Science Foundation of China (Grant No. 11874417), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100). |
Corresponding Authors:
Gen-Fu Chen
E-mail: gfchen@iphy.ac.cn
|
Cite this article:
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Electric and thermal transport properties of topological insulator candidate LiMgBi 2021 Chin. Phys. B 30 127101
|
[1] Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin:Springer) p. 46 [2] Tritt T M and Subramanian M A 2006 MRS Bull. 31 188 [3] DiSalvo F J 1999 Science 285 703 [4] Rowe D M 2018 CRC Handbook of Thermoelectrics (New York:CRC Press) [5] Müchler L, Casper F, Yan B, Chadov S and Felser C 2013 Phys. Status Solidi RRL 7 91 [6] Takahashi R and Murakami S 2012 Semicond Sci. Technol. 27 124005 [7] Xu Y 2016 Chin. Phys. B 25 117309 [8] Fu C, Sun Y and Felser C 2020 APL Mater. 8 040913 [9] Xu N, Xu Y and Zhu J 2017 npj Quantum Mater. 2 1 [10] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634 [11] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178 [12] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438 [13] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480 [14] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298 [15] Tang F, Po H C and Vishwanath A and Wan X 2019 Nature 566 486 [16] Sattigeri R M, Pillai S B, Jha P K and Chakraborty B 2020 Phys. Chem. Phys. 22 4602 [17] Yadav M K and Sanyal B 2015 J. Alloys Compd. 622 388 [18] Parsamehr S, Boochani A, Amiri M, Solaymani S, Sartipi E, Naderi S and Aminian A 2020 Philos. Mag. 101 369 [19] Toby B H 2001 J. Appl. Crystall. 34 210 [20] Bende D, Grin Y and Wagner F R 2014 Chemistry 20 9702 [21] Nowotny H and Holub F 1960 91 877 [22] Zhang X, Sun S S and Lei H C 2017 Phys. Rev. B 95 035209 [23] Ren Z, Taskin A, Sasaki S, Segawa K and Ando Y 2010 Phys. Rev. B 82 241306 [24] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 [25] Sun S, Wang Q, Guo P J, Liu K and Lei H C 2016 New J. Phys. 18 082002 [26] Tafti F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2016 Nat. Phys. 12 272 [27] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev Lett. 106 196801 [28] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413 [29] Huang X C, Zhao L X, Long Y J, Wang P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023 [30] Isaeva A, Rasche B and Ruck M 2013 Phys. Status Solidi RRL 7 39 [31] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398 [32] Murakami S 2006 Phys. Rev. Lett. 97 236805 [33] Syers P and Paglione J 2017 Phys. Rev. B 95 045123 [34] Harman T C, Paris B, Miller S E and Goering H L 1957 J. Phys. Chem. Solids 2 181 [35] He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A and Chen G F 2017 Phys. Rev. B 95 195165 [36] Luo Y K, Li H, Dai Y M, Miao H, Shi Y G, Ding H, Taylor A J, Yarotski D A, Prasankumar R P and Thompson J D 2015 Appl. Phys. Lett. 107 182411 [37] Zhao L X, Xu Q N, Wang X M, He J B, Li J, Yang H X, Long Y J, Chen D, Liang H, Li C H, Xue M Q, Li J Q, Ren Z A, Lu L, Weng H M, Fang Z, Dai X and Chen G F 2017 Phys. Rev B 95 115119 [38] Shrestha K, Chou M, Graf D, Yang H D, Lorenz B and Chu C W 2017 Phys. Rev. B 95 195113 [39] Butch N P, Kirshenbaum K, Syers P, Sushkov A B, Jenkins G S, Drew H D and Paglione J 2010 Phys. Rev. B 81 241301 [40] Mi H X, Li H Y, Qiao C Y, Zhang T, Han L and Xu J 2020 Rare Metal. Mat. Eng. 49 2234 [41] Gao Y W, He Y Z and Zhu L L 2010 Chin. Sci. Bull. 55 16 [42] Champness C H, Chiang P T and Parekh P 1965 Can. J. Phys. 43 653 [43] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|