Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127101    DOI: 10.1088/1674-1056/ac009f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electric and thermal transport properties of topological insulator candidate LiMgBi

Hao OuYang(欧阳豪)1,2,†, Qing-Xin Dong(董庆新)1,2,†, Yi-Fei Huang(黄奕飞)1,2, Jun-Sen Xiang(项俊森)1, Li-Bo Zhang(张黎博)1,2, Chen-Sheng Li(李晨圣)1,2, Pei-Jie Sun(孙培杰)1,2,3, Zhi-An Ren(任治安)1,2,3, and Gen-Fu Chen(陈根富)1,2,3,‡
1 Institute of Physics, and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We report the transport properties of a topological insulator candidate, LiMgBi. The electric resistivity of the title compound exhibits a metal-to-semiconductor-like transition at around 160 K and tends to saturation below 50 K. At low temperatures, the magnetoresistance is up to ~260% at 9 T and a clear weak antilocalization effect is observed in the low magnetic-field region. The Hall measurement reveals that LiMgBi is a multiband system, where hole-type carriers (nh~1018 cm-3) play a major role in the transport process. Remarkably, LiMgBi possess a large Seebeck coefficient (~440 μV/K) and a moderate thermal conductivity at room temperature, which indicate that LiMgBi is a promising candidate in thermoelectric applications.
Keywords:  thermoelectric      topological insulator      crystal growth  
Received:  27 March 2021      Revised:  29 April 2021      Accepted manuscript online:  13 May 2021
PACS:  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  65.40.-b (Thermal properties of crystalline solids)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300604), the National Natural Science Foundation of China (Grant No. 11874417), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100).
Corresponding Authors:  Gen-Fu Chen     E-mail:  gfchen@iphy.ac.cn

Cite this article: 

Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Electric and thermal transport properties of topological insulator candidate LiMgBi 2021 Chin. Phys. B 30 127101

[1] Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin:Springer) p. 46
[2] Tritt T M and Subramanian M A 2006 MRS Bull. 31 188
[3] DiSalvo F J 1999 Science 285 703
[4] Rowe D M 2018 CRC Handbook of Thermoelectrics (New York:CRC Press)
[5] Müchler L, Casper F, Yan B, Chadov S and Felser C 2013 Phys. Status Solidi RRL 7 91
[6] Takahashi R and Murakami S 2012 Semicond Sci. Technol. 27 124005
[7] Xu Y 2016 Chin. Phys. B 25 117309
[8] Fu C, Sun Y and Felser C 2020 APL Mater. 8 040913
[9] Xu N, Xu Y and Zhu J 2017 npj Quantum Mater. 2 1
[10] Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X A, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G and Ren Z F 2008 Science 320 634
[11] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[12] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[13] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[14] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298
[15] Tang F, Po H C and Vishwanath A and Wan X 2019 Nature 566 486
[16] Sattigeri R M, Pillai S B, Jha P K and Chakraborty B 2020 Phys. Chem. Phys. 22 4602
[17] Yadav M K and Sanyal B 2015 J. Alloys Compd. 622 388
[18] Parsamehr S, Boochani A, Amiri M, Solaymani S, Sartipi E, Naderi S and Aminian A 2020 Philos. Mag. 101 369
[19] Toby B H 2001 J. Appl. Crystall. 34 210
[20] Bende D, Grin Y and Wagner F R 2014 Chemistry 20 9702
[21] Nowotny H and Holub F 1960 91 877
[22] Zhang X, Sun S S and Lei H C 2017 Phys. Rev. B 95 035209
[23] Ren Z, Taskin A, Sasaki S, Segawa K and Ando Y 2010 Phys. Rev. B 82 241306
[24] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[25] Sun S, Wang Q, Guo P J, Liu K and Lei H C 2016 New J. Phys. 18 082002
[26] Tafti F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2016 Nat. Phys. 12 272
[27] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev Lett. 106 196801
[28] Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W D, Cava R J and Ong N P 2015 Science 350 413
[29] Huang X C, Zhao L X, Long Y J, Wang P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[30] Isaeva A, Rasche B and Ruck M 2013 Phys. Status Solidi RRL 7 39
[31] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[32] Murakami S 2006 Phys. Rev. Lett. 97 236805
[33] Syers P and Paglione J 2017 Phys. Rev. B 95 045123
[34] Harman T C, Paris B, Miller S E and Goering H L 1957 J. Phys. Chem. Solids 2 181
[35] He J B, Chen D, Zhu W L, Zhang S, Zhao L X, Ren Z A and Chen G F 2017 Phys. Rev. B 95 195165
[36] Luo Y K, Li H, Dai Y M, Miao H, Shi Y G, Ding H, Taylor A J, Yarotski D A, Prasankumar R P and Thompson J D 2015 Appl. Phys. Lett. 107 182411
[37] Zhao L X, Xu Q N, Wang X M, He J B, Li J, Yang H X, Long Y J, Chen D, Liang H, Li C H, Xue M Q, Li J Q, Ren Z A, Lu L, Weng H M, Fang Z, Dai X and Chen G F 2017 Phys. Rev B 95 115119
[38] Shrestha K, Chou M, Graf D, Yang H D, Lorenz B and Chu C W 2017 Phys. Rev. B 95 195113
[39] Butch N P, Kirshenbaum K, Syers P, Sushkov A B, Jenkins G S, Drew H D and Paglione J 2010 Phys. Rev. B 81 241301
[40] Mi H X, Li H Y, Qiao C Y, Zhang T, Han L and Xu J 2020 Rare Metal. Mat. Eng. 49 2234
[41] Gao Y W, He Y Z and Zhu L L 2010 Chin. Sci. Bull. 55 16
[42] Champness C H, Chiang P T and Parekh P 1965 Can. J. Phys. 43 653
[43] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[7] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[8] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[11] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[12] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[15] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
No Suggested Reading articles found!