Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 066801    DOI: 10.1088/1674-1056/abf4fa
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM

Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉)
Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance. In this research, we carried out a detailed study on electron transfer process at the interface of nanowire CH3NH3PbI3(N-MAPbI3)/Phenyl C61 butyric acid methyl-ester synonym (PCBM), as well as the interface of compact CH3NH3PbI3(C-MAPbI3)/PCBM by transient absorption spectroscopy. By comparing the carrier recombination dynamics of N-MAPbI3, N-MAPbI3/PCBM, C-MAPbI3, and C-MAPbI3/PCBM from picosecond (ps) to hundred nanosecond (ns) time scale, it is demonstrated that electron transfer at N-MAPbI3/PCBM interface is less efficient than that at C-MAPbI3/PCBM interface. In addition, electron transfer efficiency at C-MAPbI3/PCBM interface was found to be excitation density-dependent, and it reduces with photo-generation carrier concentration increasing in a range from 1.0×1018 cm-3-4.0×1018 cm-3. Hot electron transfer, which leads to acceleration of electron transfer between the interfaces, was also visualized as carrier concentration increases from 1.0×1018 cm-3-2.2×1018 cm-3.
Keywords:  lead-halide perovskite      nanowire      interface electron transfer      transient absorption spectroscopy  
Received:  01 January 2021      Revised:  22 March 2021      Accepted manuscript online:  06 April 2021
PACS:  68.35.bj (Amorphous semiconductors, glasses)  
  68.55.ag (Semiconductors)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 21503066 and 61904048), the Fundamental Research Project from Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20180302174021198), the Natural Science Foundation of Hebei Province, China (Grant No. F2017201136), and the Foundation of Hebei Educational Committee (Grant No. ZC2016003).
Corresponding Authors:  Wei Dang, Xiao-Hui Zhao     E-mail:  dangwei@hbu.edu.cn;xhzhao@hbu.edu.cn

Cite this article: 

Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉) In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM 2021 Chin. Phys. B 30 066801

[1] Chart of Best Research-Cell Efficiencies Provided by NREL http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg
[2] Zhao J J, Zhao L, Deng Y H, Xiao X, Ni Z Y, Xu S and Huang J S 2020 Nat. Photon. 14 612
[3] Zhang C X, Wang S, Li X M, Yuan M J, Turyanska L and Yang X Y 2020 Adv. Funct. Mater. 30 1910582
[4] Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D and Shen L 2020 Light Sci. Appl. 9 18508
[5] Li C L, Ma Y, Xiao Y F, Shen L and Ding L M 2020 InfoMat. 2 1247
[6] Ye F, Lin H, Wu H D, Zhu L, Huang Z F, Ouyang D, Niu G D and Choy W C H 2018 Adv. Funct. Mater. 29 1806984
[7] Shao S Y and Loi M A 2019 Adv. Mater. Interfaces 7 1901469
[8] Wolff C M, Caprioglio P, Stolterfoht M and Neher D 2019 Adv. Mater. 31 1902762
[9] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J and Nicholas R J 2015 Nat. Phys. 11 582
[10] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522
[11] Singh R, Suranagi S R, Kumar M and Shukla V K 2017 J. Appl. Phys. 122 235302
[12] Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G and Huang J S 2015 Nat. Commun. 6 7747
[13] Pan H, Chen P R, Shi B, Li Y C, Gao Q Y, Zhang L, Zhao Y, Huang Q and Zhang X D 2020 Acta Phys. Sin. 69 077101 (in CHinese)
[14] Yin J, Sun Y B, Fu W L, Wang Y Q, Xi J T and Sun Y M 2016 Mater. Lett. 184 78
[15] Horváth E, Spina M, Szekrényes Z, Kamarás K, Gaal R, Gachet D and Forró L 2014 Nano Lett. 14 6761
[16] Im J H, Luo J S, Franckevicius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Gratzel M and Park N G 2015 Nano Lett. 15 2120
[17] Zhu P C, Gu S, Shen X P, Xu N, Tan Y L, Zhuang S D, Deng Y, Lu Z D, Wang Z L and Zhu J 2016 Nano Lett. 16 871
[18] Deng W, Huang L M, Xu X Z, Zhang X J, Jin X C, Lee S T and Jie J S 2017 Nano Lett. 17 2482
[19] Asuo, I M, Fourmont P, Ka I, Gedamu D, Bouzidi S, Pignolet A, Riad R and Cloutier S G 2018 Small 15 1804150
[20] Hu Q, Wu H, Sun J, Yan D H, Gao Y L and Yang J L 2016 Nanoscale 8 5350
[21] Singh R B, Suranagi S R, Yang S J and Cho K 2018 Nano Energy 51 192
[22] Saba M, Cadelano M, Marongiu D, Chen F P, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A and Bongiovanni G 2014 Nat.Commun. 5 5049
[23] Tian Y X and Scheblykin I G 2015 J. Phys. Chem. Lett. 6 3466
[24] Shao Y C, Xiao Z G, Bi C, Yuan Y B and Huang J S 2014 Nat. Commun. 5 5784
[25] Madjet M E, Berdiyorov G R, El-Mellouhi F, Alharbi F H, Akimov A V and Kais S 2017 J. Phys. Chem. Lett. 8 4439
[26] Tian W M, Zhao C Y, Leng J, Cui R R and Jin S Y 2015 J. Am. Chem. Soc. 137 12458
[27] Makuta S, Liu M N, Endo M, Nishimura H, Wakamiyab A and Tachibana Y 2013 J. Name. 00 1
[28] Kim J, Godin R, Dimitrov S D, Du T, Bryant D, McLachlan M A and Durrant J R 2018 Adv. Energy Mater. 8 1802474
[29] Sum T C and Mathews N 2014 Energy Environ. Sci. 7 2518
[30] Cadelano, Sarritzu V, Sestu N, Marongiu D, Chen F, Piras R, Corpino R, Carbonaro C M, Quochi F, Saba M, Mura A and Bongiovanni G 2015 Adv. Opt. Mater. 3 1557
[31] Liu M, Endo M, Shimazaki A, Wakamiya A and Tachibana Y 2018 J. Photopolym. Sci. Technol. 31 633
[32] Ščajev P, Miasojedovas S and Juršėnas S 2020 J. Mater. Chem. C 8 10290
[33] Scajev P, Aleksiejunas R, Miasojedovas S, Nargelas S, Inoue M, Qin C J, Matsushima T, Adachi C and Jursenas S 2017 J. Phys. Chem. C 121 21600
[34] Herz L M 2016 Ann. Rev. Phys. Chem. 67 65
[35] Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 12956
[36] Fu J H, Xu Q, Han G F, Wu B, Huan C H A, Leek M L and Sum T C 2017 Nat. Commun. 8 1300
[37] Chauhan K K, Prodhan S, Ghosh D, Waghale P, Bhattacharyya S, Dutta P K and Datta P K 2020 IEEE J. Photovolt 10 803
[38] Zhou M, Sarmiento J S, Fei C B and Wang H 2019 J. Phys. Chem. C 123 22095
[39] Jiménez-López J, Puscher B M D, Guldi D M and Palomares E 2020 J. Am. Chem. Soc. 142 1236
[40] Dursun I, Maity P, Yin J, Turedi B, Zhumekenov A A, Lee K J, Mohammed O F and Bakr O M 2019 Adv. Energy Mater. 9 1900084
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[10] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[11] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[12] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[13] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[14] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[15] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
No Suggested Reading articles found!