CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM |
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟)†, and Xiao-Hui Zhao(赵晓辉)‡ |
Hebei Key Laboratory of Optic-Electronic Information Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China |
|
|
Abstract One-dimensional nanowire is an important candidate for lead-halide perovskite-based photonic detectors and solar cells. Its surface population, diameter, and growth direction, etc., are critical for device performance. In this research, we carried out a detailed study on electron transfer process at the interface of nanowire CH3NH3PbI3(N-MAPbI3)/Phenyl C61 butyric acid methyl-ester synonym (PCBM), as well as the interface of compact CH3NH3PbI3(C-MAPbI3)/PCBM by transient absorption spectroscopy. By comparing the carrier recombination dynamics of N-MAPbI3, N-MAPbI3/PCBM, C-MAPbI3, and C-MAPbI3/PCBM from picosecond (ps) to hundred nanosecond (ns) time scale, it is demonstrated that electron transfer at N-MAPbI3/PCBM interface is less efficient than that at C-MAPbI3/PCBM interface. In addition, electron transfer efficiency at C-MAPbI3/PCBM interface was found to be excitation density-dependent, and it reduces with photo-generation carrier concentration increasing in a range from 1.0×1018 cm-3-4.0×1018 cm-3. Hot electron transfer, which leads to acceleration of electron transfer between the interfaces, was also visualized as carrier concentration increases from 1.0×1018 cm-3-2.2×1018 cm-3.
|
Received: 01 January 2021
Revised: 22 March 2021
Accepted manuscript online: 06 April 2021
|
PACS:
|
68.35.bj
|
(Amorphous semiconductors, glasses)
|
|
68.55.ag
|
(Semiconductors)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant Nos. 21503066 and 61904048), the Fundamental Research Project from Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20180302174021198), the Natural Science Foundation of Hebei Province, China (Grant No. F2017201136), and the Foundation of Hebei Educational Committee (Grant No. ZC2016003). |
Corresponding Authors:
Wei Dang, Xiao-Hui Zhao
E-mail: dangwei@hbu.edu.cn;xhzhao@hbu.edu.cn
|
Cite this article:
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉) In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM 2021 Chin. Phys. B 30 066801
|
[1] Chart of Best Research-Cell Efficiencies Provided by NREL http://www.nrel.gov/pv/assets/images/efficiency_chart.jpg [2] Zhao J J, Zhao L, Deng Y H, Xiao X, Ni Z Y, Xu S and Huang J S 2020 Nat. Photon. 14 612 [3] Zhang C X, Wang S, Li X M, Yuan M J, Turyanska L and Yang X Y 2020 Adv. Funct. Mater. 30 1910582 [4] Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D and Shen L 2020 Light Sci. Appl. 9 18508 [5] Li C L, Ma Y, Xiao Y F, Shen L and Ding L M 2020 InfoMat. 2 1247 [6] Ye F, Lin H, Wu H D, Zhu L, Huang Z F, Ouyang D, Niu G D and Choy W C H 2018 Adv. Funct. Mater. 29 1806984 [7] Shao S Y and Loi M A 2019 Adv. Mater. Interfaces 7 1901469 [8] Wolff C M, Caprioglio P, Stolterfoht M and Neher D 2019 Adv. Mater. 31 1902762 [9] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J and Nicholas R J 2015 Nat. Phys. 11 582 [10] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522 [11] Singh R, Suranagi S R, Kumar M and Shukla V K 2017 J. Appl. Phys. 122 235302 [12] Bi C, Wang Q, Shao Y C, Yuan Y B, Xiao Z G and Huang J S 2015 Nat. Commun. 6 7747 [13] Pan H, Chen P R, Shi B, Li Y C, Gao Q Y, Zhang L, Zhao Y, Huang Q and Zhang X D 2020 Acta Phys. Sin. 69 077101 (in CHinese) [14] Yin J, Sun Y B, Fu W L, Wang Y Q, Xi J T and Sun Y M 2016 Mater. Lett. 184 78 [15] Horváth E, Spina M, Szekrényes Z, Kamarás K, Gaal R, Gachet D and Forró L 2014 Nano Lett. 14 6761 [16] Im J H, Luo J S, Franckevicius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Gratzel M and Park N G 2015 Nano Lett. 15 2120 [17] Zhu P C, Gu S, Shen X P, Xu N, Tan Y L, Zhuang S D, Deng Y, Lu Z D, Wang Z L and Zhu J 2016 Nano Lett. 16 871 [18] Deng W, Huang L M, Xu X Z, Zhang X J, Jin X C, Lee S T and Jie J S 2017 Nano Lett. 17 2482 [19] Asuo, I M, Fourmont P, Ka I, Gedamu D, Bouzidi S, Pignolet A, Riad R and Cloutier S G 2018 Small 15 1804150 [20] Hu Q, Wu H, Sun J, Yan D H, Gao Y L and Yang J L 2016 Nanoscale 8 5350 [21] Singh R B, Suranagi S R, Yang S J and Cho K 2018 Nano Energy 51 192 [22] Saba M, Cadelano M, Marongiu D, Chen F P, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A and Bongiovanni G 2014 Nat.Commun. 5 5049 [23] Tian Y X and Scheblykin I G 2015 J. Phys. Chem. Lett. 6 3466 [24] Shao Y C, Xiao Z G, Bi C, Yuan Y B and Huang J S 2014 Nat. Commun. 5 5784 [25] Madjet M E, Berdiyorov G R, El-Mellouhi F, Alharbi F H, Akimov A V and Kais S 2017 J. Phys. Chem. Lett. 8 4439 [26] Tian W M, Zhao C Y, Leng J, Cui R R and Jin S Y 2015 J. Am. Chem. Soc. 137 12458 [27] Makuta S, Liu M N, Endo M, Nishimura H, Wakamiyab A and Tachibana Y 2013 J. Name. 00 1 [28] Kim J, Godin R, Dimitrov S D, Du T, Bryant D, McLachlan M A and Durrant J R 2018 Adv. Energy Mater. 8 1802474 [29] Sum T C and Mathews N 2014 Energy Environ. Sci. 7 2518 [30] Cadelano, Sarritzu V, Sestu N, Marongiu D, Chen F, Piras R, Corpino R, Carbonaro C M, Quochi F, Saba M, Mura A and Bongiovanni G 2015 Adv. Opt. Mater. 3 1557 [31] Liu M, Endo M, Shimazaki A, Wakamiya A and Tachibana Y 2018 J. Photopolym. Sci. Technol. 31 633 [32] Ščajev P, Miasojedovas S and Juršėnas S 2020 J. Mater. Chem. C 8 10290 [33] Scajev P, Aleksiejunas R, Miasojedovas S, Nargelas S, Inoue M, Qin C J, Matsushima T, Adachi C and Jursenas S 2017 J. Phys. Chem. C 121 21600 [34] Herz L M 2016 Ann. Rev. Phys. Chem. 67 65 [35] Manser J S, Christians J A and Kamat P V 2016 Chem. Rev. 116 12956 [36] Fu J H, Xu Q, Han G F, Wu B, Huan C H A, Leek M L and Sum T C 2017 Nat. Commun. 8 1300 [37] Chauhan K K, Prodhan S, Ghosh D, Waghale P, Bhattacharyya S, Dutta P K and Datta P K 2020 IEEE J. Photovolt 10 803 [38] Zhou M, Sarmiento J S, Fei C B and Wang H 2019 J. Phys. Chem. C 123 22095 [39] Jiménez-López J, Puscher B M D, Guldi D M and Palomares E 2020 J. Am. Chem. Soc. 142 1236 [40] Dursun I, Maity P, Yin J, Turedi B, Zhumekenov A A, Lee K J, Mohammed O F and Bakr O M 2019 Adv. Energy Mater. 9 1900084 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|