Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057401    DOI: 10.1088/1674-1056/ac398a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit

Hou-Rong Zhou(周后荣)1,2, Kun-Jie Cheng(程昆杰)1,2, Jie Ren(任洁)1,2,3,†, Li-Xing You(尤立星)1,2,3,‡, Li-Liang Ying(应利良)1,3, Xiao-Yan Yang(杨晓燕)1,3, Hao Li(李浩)1,3, and Zhen Wang(王镇)1,3
1 State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 CAS Center for Excellence in Superconducting Electronics, Shanghai 200050, China
Abstract  Superconducting nanowire single-photon detectors (SNSPDs) are typical switching devices capable of detecting single photons with almost 100% detection efficiency. However, they cannot determine the exact number of incident photons during a detection event. Multi-pixel SNSPDs employing multiple read-out channels can provide photon number resolvability (PNR), but they require increased cooling power and costly multi-channel electronic systems. In this work, a single-flux quantum (SFQ) circuit is employed, and PNR based on multi-pixel SNSPDs is successfully demonstrated. A multi-input magnetically coupled DC/SFQ converter (MMD2Q) circuit with a mutual inductance M is used to combine and record signals from a multi-pixel SNSPD device. The designed circuit is capable of discriminating the amplitude of the combined signals in accuracy of Φ0/M with Φ0 being a single magnetic flux quantum. By employing the MMD2Q circuit, the discrimination of up to 40 photons can be simulated. A 4-parallel-input MMD2Q circuit is fabricated, and a PNR of 3 is successfully demonstrated for an SNSPD array with one channel reserved for the functional verification. The results confirm that an MMD2Q circuit is an effective tool for implementing PNR with multi-pixel SNSPDs.
Keywords:  superconducting nanowire      single-flux quantum circuit      photon number resolution  
Received:  08 September 2021      Revised:  11 November 2021      Accepted manuscript online: 
PACS:  74.25.fg (Thermoelectric effects)  
  74.25.Gz (Optical properties)  
  85.25.Cp (Josephson devices)  
Fund: This work was also supported by the National Key R&D Program of China (Grant No.2017YFA0304000),the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA18000000),and the Science and Technology Commission of Shanghai Municipality,China (Grant No.18511110200).
Corresponding Authors:  Jie Ren,E-mail:jieren@mail.sim.ac.cn;Li-Xing You,E-mail:lxyou@mail.sim.ac.cn     E-mail:  jieren@mail.sim.ac.cn;lxyou@mail.sim.ac.cn
About author:  2021-11-15

Cite this article: 

Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇) Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit 2022 Chin. Phys. B 31 057401

[1] Zhong H S, Wang H, Deng Y H et al. 2020 Science 370 1460
[2] Liu H, Jiang C, Zhu H T et al. 2021 Phys. Rev. Lett. 126 250502
[3] Biswas A, Kovalik J M, Wright M W, Roberts W T, Cheng M K, Quirk K J, Srinivasan M, Shaw M D and Birnbaum K M 2014 SPIE Proc. 8971 89710X
[4] Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H and Xiong Y H 2016 Opt. Lett. 41 3848
[5] Tang R F, Li Z L, Li Y Q, Pi X Y, Su X L, Li R, Zhang H T, Zhai D S and Fu H L 2018 Opt. Lett. 43 5488
[6] Chen L, Lau J A, Schwarzer D, Meyer J and Verma V B and Wodtke A M 2019 Science 363 158
[7] Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J and Kim J 2017 Optica 4 1534
[8] Becerra F E, Fan J and Migdall A 2014 Nat. Photon. 9 48
[9] Lusardi N, Los J W, Gourgues R B, Bulgarini G and Geraci A 2017 Rev. Sci. Instrum. 88 035003
[10] Gaggero A, Mattioli F, Zhou Z, Gaudio R, Leoni R and Fiore A 2016 18th International Conference on Transparent Optical Networks, July 10-14, 2016, Trento, Italy, We.D5.5
[11] Zhang W J, Huang J, Zhang C J, You L X, Lv C L, Zhang L, Li H, Wang Z and Xie X M 2019 IEEE Trans. Appl. Supercond. 29 2200204
[12] Allman M S, Verma V B, Stevens M, Gerrits T, Horansky R D, Lita A E, Marsili F, Beyer A, Shaw M D, Kumor D, Mirin R and Nam S W 2015 Appl. Phys. Lett. 106 192601
[13] Terai H, Yamashita T, Miki S, Makise K and Wang Z 2012 Opt. Express 20 20115
[14] Terai H, Miki S, Yamashita T, Makise K and Wang Z 2010 Appl. Phys. Lett. 97 112510
[15] Terai H, Miki S and Wang Z 2009 IEEE Trans. Appl. Supercond. 19 350
[16] Myoren H, Takeda S, Naruse M, Taino T, Chen J and Wu P H 2015 IEEE Trans. Appl. Supercond. 25 2200204
[17] Yamashita T, Miki S, Terai H, Makise K and Wang Z 2013 IEEE Trans. Appl. Supercond. 23 2500804
[18] Miyajima S, Yabuno M, Miki, S, Yamashita T and Terai H 2018 Opt. Express 26 029045
[19] Hofherr M, Wetzstein O, Engert S, Ortlepp T, Berg B, Ilin K, Henrich D, Stolz R, Toepfer H, Meyer H G and Siegel M 2012 Opt. Express 20 28683
[20] Myoren H, Denda S, Ota K, Naruse M, Taino T, Kang L, Chen J and Wu P 2018 IEEE Trans. Appl. Supercond. 28 2500304
[21] Gao X P, Qiao Q, Wang M L, Niu M H, Liu H L, Maezawa M, Ren J and Wang Z 2021 IEEE Trans. Appl. Supercond. 31 110105
[22] Wu J J, You L X, Chen S J, Li H, He Y H, Lv C L, Wang Z and Xie X M 2017 Appl. Opt. 56 2195
[23] PSCAN2 Superconductor circuit simulator(available at http://pscan2sim.org/index.html)
[24] Ying L L, Zhang X, Niu M H, Ren J, Peng W, Maezawa M and Wang Z 2021 IEEE Trans. Appl. Supercond. 31 130514
[25] Zhang W J, You L X, Li H, Huang J, Lv C L, Zhang L, Liu X, Wu J J, Wang Z and Xie X 2017 Sci. China Phys. Mech. Astron. 60 120314
[1] Pulse-gated mode of commercial superconducting nanowire single photon detectors
Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(4): 040302.
[2] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[3] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[4] Tunable coplanar waveguide resonator with nanowires
Zhou Yu (周渝), Jia Tao (郏涛), Zhai Ji-Quan (翟计全), Wang Cheng (汪橙), Zhong Xian-Qian (钟先茜), Cao Zhi-Min (曹志敏), Sun Guo-Zhu (孙国柱), Kang Lin (康琳), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(4): 047403.
No Suggested Reading articles found!