Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 046204    DOI: 10.1088/1674-1056/aca7e7

Mechanical enhancement and weakening in Mo6S6 nanowire by twisting

Ke Xu(徐克)1, Yanwen Lin(林演文)1, Qiao Shi(石桥)1, Yuequn Fu(付越群)1, Yi Yang(杨毅)2, Zhisen Zhang(张志森)1,†, and Jianyang Wu(吴建洋)1,3,‡
1 Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China;
2 Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China;
3 NTNU Nanomechanical Laboratory, Norwegian University of Science and Technology, Trondheim 7491, Norway
Abstract  The torsional, bending and tensile mechanical properties of Mo6S6 nanowire are examined by molecular dynamics (MD) simulations with a first-principles-based reactive force field (ReaxFF). It is found that Mo6S6 nanowire shows unique mechanical properties such as high torsional and bending flexibility, high Young's modulus and strength, and negative Poisson's ratio. The Mo6S6 nanowire can be strengthened or weakened via twisting, depending on the twist angle. The Mo6S6 nanowire with a slight twist angle shows brittle failure, whereas it with a large twist angle exhibits ductile failure and necking behavior. Twisted Mo6S6 nanowires show a crossover in the negative Poisson's ratio at critical strains, that is, Poisson's ratio first decreases but then increases, with a minimum value down to around -0.8 at the strain of 0.01 as the twist angle is 21.0 °/nm. The negative Poisson's ratio and the crossover are explained by the bond transform that makes zero angles to the wire cross-section.
Keywords:  Mo6S6 nanowire      mechanical properties      twisting      negative Poisson's ratio  
Received:  08 August 2022      Revised:  08 November 2022      Accepted manuscript online:  02 December 2022
PACS:  62.20.M- (Structural failure of materials) (Poisson's ratio)  
  62.23.Hj (Nanowires)  
  02.70.Pt (Boundary-integral methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172314, 11772278, 12002350, and 11904300), the Jiangxi Provincial Outstanding Young Talents Program (Grant No. 20192BCBL23029), the Fundamental Research Funds for the Central Universities of Xiamen University (Grant Nos. 20720210025 and 20720220023), and the "111" Project (Grant No. B16029).
Corresponding Authors:  Zhisen Zhang, Jianyang Wu     E-mail:;

Cite this article: 

Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅), Zhisen Zhang(张志森), and Jianyang Wu(吴建洋) Mechanical enhancement and weakening in Mo6S6 nanowire by twisting 2023 Chin. Phys. B 32 046204

[1] Lee C, Wei X, Kysar Jeffrey W and Hone J 2008 Science 321 385
[2] Balandin A A 2011 Nat. Mater. 10 569
[3] Popov I, Yang T, Berber S, Seifert G and Tománek D 2007 Phys. Rev. Lett. 99 085503
[4] Shao Y, Meng F S, Li J H and Zhao X 2019 Acta Phys. Sin. 68 216201 (in Chinese)
[5] Wang P, Zhang N C, Jiang C L, Liu F S, Liu Z T and Liu Q J 2020 Chin. Phys. B 29 076201
[6] Zhou Y, Zhang X and Hu M 2017 Nano Lett. 17 1269
[7] Liang T, Xu K, Han M, Yao Y, Zhang Z, Zeng X, Xu J and Wu J 2022 Mater. Today Phys. 25 100705
[8] Liu M, Artyukhov V I, Lee H, Xu F and Yakobson B I 2013 ACS Nano 7 10075
[9] Gao E, Li R and Baughman R H 2020 ACS Nano 14 17071
[10] Gao E, Yuan X, Nielsen S O and Baughman R H 2022 Phys. Rev. Appl. 18 014044
[11] Le D, Sun D, Lu W, Aminpour M, Wang C, Ma Q, Rahman T S and Bartels L 2013 Surf. Sci. 611 1
[12] Huang W, Wang X, Ji X, Zhang Z and Jin C 2018 Nano Res. 11 5849
[13] Xu K, Deng S, Liang T, Cao X, Han M, Zeng X, Zhang Z, Yang N and Wu J 2022 Nanoscale 14 3078
[14] Kibsgaard J, Tuxen A, Levisen M, Lægsgaard E, Gemming S, Seifert G, Lauritsen J V and Besenbacher F 2008 Nano Lett. 8 3928
[15] Vilfan I 2006 Eur. Phys. J. B 51 277
[16] Lin J, Cretu O, Zhou W, Suenaga K, Prasai D, Bolotin K I, Cuong N T, Otani M, Okada S, Lupini A R, Idrobo J C, Caudel D, Burger A, Ghimire N J, Yan J, Mandrus D G, Pennycook S J and Pantelides S T 2014 Nat. Nanotechnol. 9 436
[17] Çakır D, Durgun E, Gülseren O and Ciraci S 2006 Phys. Rev. B 74 235433
[18] Liu X, Xu T, Wu X, Zhang Z, Yu J, Qiu H, Hong J H, Jin C H, Li J X, Wang X R, Sun L T and Guo W 2013 Nat. Commun. 4 1776
[19] Souza D F, Rosa A L, Venezuela P, Padilha J E, Fazzio A and Pontes R B 2019 Phys. Rev. B 100 235416
[20] Ying P, Zhang J, Zhou J, Liang Q and Zhong Z 2020 Comput. Mater. Sci. 179 109691
[21] Murugan P, Kumar V, Kawazoe Y and Ota N 2007 Nano Lett. 7 2214
[22] Popov I, Gemming S, Okano S, Ranjan N and Seifert G 2008 Nano Lett. 8 4093
[23] Koskinen P 2016 Phys. Rev. Appl. 6 034014
[24] Kibsgaard J 2008 Atomic-scale investigation of MoS2-based hydrotreating model catalysts (Ph.D. Thesis) (Aarhus: University of Aarhus)
[25] Plimpton S 1995 J. Comput. Phys. 117 1
[26] Large-scale Atomic/Molecular Massively Parallel Simulator
[27] Chenoweth K, van Duin A C T and Goddard W A 2008 J. Phys. Chem. A 112 1040
[28] Ostadhossein A, Rahnamoun A, Wang Y, Zhao P, Zhang S, Crespi V H and van Duin A C T 2017 J. Phys. Chem. Lett. 8 631
[29] Farahani H, Rajabpour A, Khanaki M and Reyhani A 2018 Comput. Mater. Sci. 142 1
[30] Lin C, Chen X and Zou X 2019 ACS Appl. Mater. Interfaces 11 25547
[31] Srivastava D, Wei C and Cho K 2003 Appl. Mech. Rev. 56 215
[32] Vijayaraghavan V, Dethan J F N and Gao L 2018 Sci. China Phys. Mech. 62 34611
[33] Jing Y and Meng Q 2010 Physica B 405 2413
[34] Pan D 2015 Chin. Sci. Bull. 60 764 (in Chinese)
[35] Bertolazzi S, Brivio J and Kis A 2011 ACS Nano 5 9703
[36] Nicklow R, Wakabayashi N and Smith H G 1972 Phys. Rev. B 5 4951
[37] Lu Q, Arroyo M and Huang R 2009 J. Phys. D: Appl. Phys. 42 102002
[38] Torres-Dias A C, Cerqueira T F T, Cui W, Marques M A L, Botti S, Machon D, Hartmann M A, Sun Y, Dunstan D J and San-Miguel A 2017 Carbon 123 145
[39] Wu J, Nie G, Xu J, He J, Xu Q and Zhang Z 2015 Phys. Chem. Chem. Phys. 17 32425
[40] Gao E, Guo Y, Wang Z, Nielsen S O and Baughman R H 2022 Matter 5 1192
[41] Li C and Chou T W 2003 Int. J. Solids Struct. 40 2487
[42] Candido L M, Miotto L N, Fais L M G, Cesar P F and Pinelli L A P 2018 Oper. Dent. 43 E119
[43] Suryavanshi A P, Yu M F, Wen J, Tang C and Bando Y 2004 Appl. Phys. Lett. 84 2527
[44] Kaplan-Ashiri I and Tenne R 2007 J. Clust. Sci. 18 549
[45] Xiong Q L, Zhang J, Xiao C and Li Z H 2017 Phys. Chem. Chem. Phys. 19 19948
[46] Lorenz T, Teich D, Joswig J O and Seifert G 2012 J. Phys. Chem. C 116 11714
[47] Wu J Y, Nagao S, He J Y and Zhang Z L 2011 Nano Lett. 11 5264
[48] Wu J, Cao P, Zhang Z, Ning F, Zheng S S, He J and Zhang Z 2018 Nano Lett. 18 1543
[49] Wu J, He J, Ariza P, Ortiz M and Zhang Z 2020 Int. J. Fract. 223 39
[50] Yang L, Liu J, Lin Y, Xu K, Cao X, Zhang Z and Wu J 2021 Chem. Mater. 33 8758
[51] Wu J, Nagao S, He J and Zhang Z 2013 Small 9 3561
[52] Wu J, He J, Odegard G M, Nagao S, Zheng Q and Zhang Z 2013 J. Am. Chem. Soc. 135 13775
[53] Wu J, Zhao H, Liu J, Zhang Z, Ning F and Liu Y 2018 Carbon 133 335
[54] Wu J, Shi Q, Zhang Z, Wu H H, Wang C, Ning F, Xiao S, He J and Zhang Z 2018 Nanoscale 10 15641
[55] Jiang J W and Park H S 2014 Nat. Commun. 5 4727
[56] Qian S, Sheng X, Zhou Y, Yan X, Chen Y, Huang Y, Huang X, Feng E and Huang W 2018 J. Phys. Chem. C 122 7959
[57] Jin W, Sun W, Kuang X, Lu C and Kou L 2020 J. Phys. Chem. Lett. 11 9643
[58] Wu J Y, He J Y and Zhang Z L 2013 Comput. Mater. Sci. 80 15
[59] Lin Y, Xu K, Cao X, Zhang Z and Wu J 2021 Mech. Mater. 162 104035
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[3] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[4] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[5] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[8] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[9] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[10] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[11] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[12] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[13] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[14] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[15] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
No Suggested Reading articles found!