INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene |
Min Zhou(周敏)1,2, Yukun Zhao(赵宇坤)1,†, Lifeng Bian(边历峰)1, Jianya Zhang(张建亚)1,2, Wenxian Yang(杨文献)1, Yuanyuan Wu(吴渊渊)1, Zhiwei Xing(邢志伟)1,2, Min Jiang(蒋敏)1,2, and Shulong Lu(陆书龙)1,‡ |
1 Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China; 2 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Due to the wide application of UV-A (320 nm-400 nm) and UV-C (200 nm-280 nm) photodetectors, dual-wavelength (UV-A/UV-C) photodetectors are promising for future markets. A dual-wavelength UV photodetector based on vertical (Al,Ga)N nanowires and graphene has been demonstrated successfully, in which graphene is used as a transparent electrode. Both UV-A and UV-C responses can be clearly detected by the device, and the rejection ratio (R254 nm/R450 nm) exceeds 35 times at an applied bias of -2 V. The short response time of the device is less than 20 ms. Furthermore, the underlying mechanism of double ultraviolet responses has also been analyzed systematically. The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of (Al,Ga)N and GaN sections.
|
Received: 05 February 2021
Revised: 09 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
78.67.Uh
|
(Nanowires)
|
|
78.66.Fd
|
(III-V semiconductors)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0406602), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180252), Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-JSC034), the National Natural Science Foundation of China (Grant Nos. 61804163, 61875224, and 61827823), the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2018005), Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BBEL50033), Research Program of Scientific Instrument, Equipment of CAS (Grant No. YJKYYQ20200073), SINANO (Grant Nos. Y8AAQ21001 and Y4JAQ21001), and Vacuum Interconnected Nanotech Workstation (Grant Nos. Nano-X and B2006). |
Corresponding Authors:
Yukun Zhao, Shulong Lu
E-mail: ykzhao2017@sinano.ac.cn;sllu2008@sinano.ac.cn
|
Cite this article:
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙) Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene 2021 Chin. Phys. B 30 078506
|
[1] Li L, Hosomi D, Miyachi Y, Hamada T, Miyoshi M and Egawa T 2017 Appl. Phys. Lett. 111 102106 [2] Hao X J, Teng Y, Zhao Y, Wu Q H, Li X, Liu J F, Chen Y, Zhu H, Chen B L, Deng Z, Huang J, Huang Y and Yang H 2020 IEEE J. Quantum Electron. 2 4300106 [3] Ariyawansa G, Rinzan M B M, Matsik S G, Hastings G, Perera A G U, Liu H C, Buchanan M, Sproule G I, Gavrilenko V I and Kuznetsov V P 2006 Appl. Phys. Lett. 89 061112 [4] Perera A G U, Ariyawansa G, Rinzan M B M, Stevens M, Alevli M, Dietz N, Matsik S G, Asghar A, Ferguson I T, Lou H, Bezinger A and Liu H C 2007 Infrared Phys. Technol. 50 142 [5] Arora K, Singh D P, Fischer P and Kumar M 2020 Adv. Opt. Mater. 8 2000212 [6] Huang Z D, Weng W Y, Chang S J, Chiu C J, Hsueh T J and Wu S L 2013 IEEE Sens. J. 13 3462 [7] Albrecht B, Kopta S, John O, Kirste L, Driad R, Köhler K, Walther M and Ambacher O 2013 Jpn. J. Appl. Phys. 52 08JB28 [8] Liang F Z, Feng M X, Huang Y G, Sun X J, Zhan X N, Liu J X, Sun Q, Wang R X, Ge X T, Ning J Q and Yang H 2020 Opt Express 28 17188 [9] Li D B, Jiang K, Sun X J and Guo C L 2018 Adv. Opt. Photonics 10 43 [10] Gu Y, Yang G F, Danner A, Yan D W, Lu N Y, Zhang X M, Xie F, Wang Y K, Hua B, Ni X F, Fan Q, Gu X and Chen G Q 2020 IEEE T. Electron Dev. 67 160 [11] Zhang J Y, Xing Z W, Wu D M, Bian L F, Zhao Y K, Yang W X, Wu Y Y, Zhou M, Jiang M and Shu L L 2021 J. Cryst. Growth 562 126066 [12] Zhang X L, Liu B D, Liu Q Y, Yang W J, Xiong C M and Jiang X 2017 ACS Appl. Mater. Interfaces 9 2669 [13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003 [14] Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q and Lee S T 2006 Nano Lett. 6 1887 [15] Abujetas D R, Paniagua-Dominguez R and Sanchez-Gil J A 2015 Acs Photonics 2 921 [16] Zhou M, Qiu H B, He T, Zhang J Y, Yang W X, Lu S L, Bian L F and Zhao Y K 2020 Phys. Status Solidi A-Appl. Mat. 217 2000061 [17] Zhang X D, He T, Tang W B, Ma Y J, Wie X, Wang D H, Zhang H C, Sun H D, Fan Y M, Cai Y and Zhang B S 2020 J. Phys. D: Appl. Phys. 53 495105 [18] Brems S, Verguts K, Vrancken N, Vermenulen B, Porret C, Peters L, Wu H, Huyghebaert, Schouteden K, Haesendonck C and Gendt D 2017 ECS Transactions 77 3 [19] Lundquist P, Lin W P, Xu Z Y, Wong G K, Rippert E D, Helfrich J A and Ketterson J B 1994 Appt. Phys. Lett. 65 1085 [20] Preschilla N A, Elkashef N M, Srinivasa R S and Major S 1998 Surf. Coat. Technol. 108 328 [21] Lee J H, Hahm S H, Lee J H, Bae S B, Lee K S, Cho Y H and Lee J L 2003 Appt. Phys. Lett. 83 917 [22] Nam G H, Baek S H, Cho C H and Park I K 2014 Nanoscale 6 11653 [23] Wei C P, Negishi R, Ogawa Y, Akabori M, Taniyasu Y and Kobayashi Y 2019 Jpn. J. Appl. Phys. 58 SⅡB04 [24] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 [25] Gao X L, Zheng L, Cheng X H, Xin W B, Ye P Y and Zhang D W 2020 J. Mater. Sci.: Mater. Electron. 31 5807 [26] He T, Zhang X D, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P and Zhang B S 2019 Adv. Opt. Mater. 7 1801563 [27] Huang Y, Zhang L C, Wang J B, Chu X B, Zhang D Y, Zhao X L, Li X F, Xin L J, Zhao Y and Zhao F Z 2019 J. Alloys Compd. 802 70 [28] Li Y, Li Y H, Chen J, Sun Z P, Li Z, Han X, Li P, Lin X J, Liu R Q, Ma Y W and Huang W 2018 J. Mater. Chem. C 6 11666 [29] Meng R L, Ji X L, Lou Z, Yang J K, Zhang Y H, Zhang Z H, Bi W G, Wang J X and Wei T B 2019 Opt. Lett. 44 2197 [30] Goswami L, Aggarwal N, Verma R, Bishnoi S, Husale S, Pandey R and Gupta G 2020 ACS Appl. Mater. Interfaces 12 47038 [31] Goswami L, Aggarwal N, Singh M, Verma R, Vashishtha P, Jain S K, Tawale J, Pandey R and Gupta G 2020 ACS Appl. Nano. Mater. 3 8104 [32] Jia R, Zhao D F, Gao N K and Liu D 2017 Sci. Rep. 7 40483 [33] Zheng Y L, Li Y, Tang X, Wang W L and Li G Q 2020 Adv. Optical Mater. 8 2000197 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|