Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 078506    DOI: 10.1088/1674-1056/abff23
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene

Min Zhou(周敏)1,2, Yukun Zhao(赵宇坤)1,†, Lifeng Bian(边历峰)1, Jianya Zhang(张建亚)1,2, Wenxian Yang(杨文献)1, Yuanyuan Wu(吴渊渊)1, Zhiwei Xing(邢志伟)1,2, Min Jiang(蒋敏)1,2, and Shulong Lu(陆书龙)1,‡
1 Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China;
2 School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Abstract  Due to the wide application of UV-A (320 nm-400 nm) and UV-C (200 nm-280 nm) photodetectors, dual-wavelength (UV-A/UV-C) photodetectors are promising for future markets. A dual-wavelength UV photodetector based on vertical (Al,Ga)N nanowires and graphene has been demonstrated successfully, in which graphene is used as a transparent electrode. Both UV-A and UV-C responses can be clearly detected by the device, and the rejection ratio (R254 nm/R450 nm) exceeds 35 times at an applied bias of -2 V. The short response time of the device is less than 20 ms. Furthermore, the underlying mechanism of double ultraviolet responses has also been analyzed systematically. The dual-wavelength detections could mainly result from the appropriate ratio of the thicknesses and the enough energy band difference of (Al,Ga)N and GaN sections.
Keywords:  dual-wavelength ultraviolet photodetector      (Al,Ga)N nanowire      graphene      molecular beam epitaxy  
Received:  05 February 2021      Revised:  09 April 2021      Accepted manuscript online:  08 May 2021
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  78.67.Uh (Nanowires)  
  78.66.Fd (III-V semiconductors)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0406602), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180252), Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-JSC034), the National Natural Science Foundation of China (Grant Nos. 61804163, 61875224, and 61827823), the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2018005), Natural Science Foundation of Jiangxi Province, China (Grant No. 20192BBEL50033), Research Program of Scientific Instrument, Equipment of CAS (Grant No. YJKYYQ20200073), SINANO (Grant Nos. Y8AAQ21001 and Y4JAQ21001), and Vacuum Interconnected Nanotech Workstation (Grant Nos. Nano-X and B2006).
Corresponding Authors:  Yukun Zhao, Shulong Lu     E-mail:  ykzhao2017@sinano.ac.cn;sllu2008@sinano.ac.cn

Cite this article: 

Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙) Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene 2021 Chin. Phys. B 30 078506

[1] Li L, Hosomi D, Miyachi Y, Hamada T, Miyoshi M and Egawa T 2017 Appl. Phys. Lett. 111 102106
[2] Hao X J, Teng Y, Zhao Y, Wu Q H, Li X, Liu J F, Chen Y, Zhu H, Chen B L, Deng Z, Huang J, Huang Y and Yang H 2020 IEEE J. Quantum Electron. 2 4300106
[3] Ariyawansa G, Rinzan M B M, Matsik S G, Hastings G, Perera A G U, Liu H C, Buchanan M, Sproule G I, Gavrilenko V I and Kuznetsov V P 2006 Appl. Phys. Lett. 89 061112
[4] Perera A G U, Ariyawansa G, Rinzan M B M, Stevens M, Alevli M, Dietz N, Matsik S G, Asghar A, Ferguson I T, Lou H, Bezinger A and Liu H C 2007 Infrared Phys. Technol. 50 142
[5] Arora K, Singh D P, Fischer P and Kumar M 2020 Adv. Opt. Mater. 8 2000212
[6] Huang Z D, Weng W Y, Chang S J, Chiu C J, Hsueh T J and Wu S L 2013 IEEE Sens. J. 13 3462
[7] Albrecht B, Kopta S, John O, Kirste L, Driad R, Köhler K, Walther M and Ambacher O 2013 Jpn. J. Appl. Phys. 52 08JB28
[8] Liang F Z, Feng M X, Huang Y G, Sun X J, Zhan X N, Liu J X, Sun Q, Wang R X, Ge X T, Ning J Q and Yang H 2020 Opt Express 28 17188
[9] Li D B, Jiang K, Sun X J and Guo C L 2018 Adv. Opt. Photonics 10 43
[10] Gu Y, Yang G F, Danner A, Yan D W, Lu N Y, Zhang X M, Xie F, Wang Y K, Hua B, Ni X F, Fan Q, Gu X and Chen G Q 2020 IEEE T. Electron Dev. 67 160
[11] Zhang J Y, Xing Z W, Wu D M, Bian L F, Zhao Y K, Yang W X, Wu Y Y, Zhou M, Jiang M and Shu L L 2021 J. Cryst. Growth 562 126066
[12] Zhang X L, Liu B D, Liu Q Y, Yang W J, Xiong C M and Jiang X 2017 ACS Appl. Mater. Interfaces 9 2669
[13] Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H and Wang D 2007 Nano Lett. 7 1003
[14] Jie J S, Zhang W J, Jiang Y, Meng X M, Li Y Q and Lee S T 2006 Nano Lett. 6 1887
[15] Abujetas D R, Paniagua-Dominguez R and Sanchez-Gil J A 2015 Acs Photonics 2 921
[16] Zhou M, Qiu H B, He T, Zhang J Y, Yang W X, Lu S L, Bian L F and Zhao Y K 2020 Phys. Status Solidi A-Appl. Mat. 217 2000061
[17] Zhang X D, He T, Tang W B, Ma Y J, Wie X, Wang D H, Zhang H C, Sun H D, Fan Y M, Cai Y and Zhang B S 2020 J. Phys. D: Appl. Phys. 53 495105
[18] Brems S, Verguts K, Vrancken N, Vermenulen B, Porret C, Peters L, Wu H, Huyghebaert, Schouteden K, Haesendonck C and Gendt D 2017 ECS Transactions 77 3
[19] Lundquist P, Lin W P, Xu Z Y, Wong G K, Rippert E D, Helfrich J A and Ketterson J B 1994 Appt. Phys. Lett. 65 1085
[20] Preschilla N A, Elkashef N M, Srinivasa R S and Major S 1998 Surf. Coat. Technol. 108 328
[21] Lee J H, Hahm S H, Lee J H, Bae S B, Lee K S, Cho Y H and Lee J L 2003 Appt. Phys. Lett. 83 917
[22] Nam G H, Baek S H, Cho C H and Park I K 2014 Nanoscale 6 11653
[23] Wei C P, Negishi R, Ogawa Y, Akabori M, Taniyasu Y and Kobayashi Y 2019 Jpn. J. Appl. Phys. 58 SⅡB04
[24] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[25] Gao X L, Zheng L, Cheng X H, Xin W B, Ye P Y and Zhang D W 2020 J. Mater. Sci.: Mater. Electron. 31 5807
[26] He T, Zhang X D, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P and Zhang B S 2019 Adv. Opt. Mater. 7 1801563
[27] Huang Y, Zhang L C, Wang J B, Chu X B, Zhang D Y, Zhao X L, Li X F, Xin L J, Zhao Y and Zhao F Z 2019 J. Alloys Compd. 802 70
[28] Li Y, Li Y H, Chen J, Sun Z P, Li Z, Han X, Li P, Lin X J, Liu R Q, Ma Y W and Huang W 2018 J. Mater. Chem. C 6 11666
[29] Meng R L, Ji X L, Lou Z, Yang J K, Zhang Y H, Zhang Z H, Bi W G, Wang J X and Wei T B 2019 Opt. Lett. 44 2197
[30] Goswami L, Aggarwal N, Verma R, Bishnoi S, Husale S, Pandey R and Gupta G 2020 ACS Appl. Mater. Interfaces 12 47038
[31] Goswami L, Aggarwal N, Singh M, Verma R, Vashishtha P, Jain S K, Tawale J, Pandey R and Gupta G 2020 ACS Appl. Nano. Mater. 3 8104
[32] Jia R, Zhao D F, Gao N K and Liu D 2017 Sci. Rep. 7 40483
[33] Zheng Y L, Li Y, Tang X, Wang W L and Li G Q 2020 Adv. Optical Mater. 8 2000197
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[8] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[15] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
No Suggested Reading articles found!