Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067101    DOI: 10.1088/1674-1056/abeee1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic thermoelectric transport properties in polycrystalline SnSe2

Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东)
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  It is reported that SnSe2 consisting of the same elements as SnSe, is a new promising thermoelectric material with advantageous layered structure. In this work, the thermoelectric performance of polycrystalline SnSe2 is improved through introducing SnSe phase and electron doping (Cl doped in Se sites). The anisotropic transport properties of SnSe2 are investigated. A great reduction of the thermal conductivity is achieved in SnSe2 through introducing SnSe phase, which mainly results from the strong SnSe2-SnSe inter-phase scattering. Then the carrier concentration is optimized via Cl doping, leading to a great enhancement of the electrical transport properties, thus an extraordinary power factor of ~5.12 μW·cm-1·K-2 is achieved along the direction parallel to the spark plasma sintering (SPS) pressure direction (||P). Through the comprehensive consideration on the anisotropic thermoelectric transport properties, an enhanced figure of merit ZT is attained and reaches to ~0.6 at 773 K in SnSe2-2% SnSe after 5% Cl doping along the||P direction, which is much higher than ~0.13 and ~0.09 obtained in SnSe2-2% SnSe and pristine SnSe2 samples, respectively.
Keywords:  thermoelectric      SnSe2      anisotropic structure      Cl-doping  
Received:  02 March 2021      Revised:  12 March 2021      Accepted manuscript online:  16 March 2021
PACS:  71.15.-m (Methods of electronic structure calculations)  
  72.15.Cz (Electrical and thermal conduction in amorphous and liquid metals and Alloys ?)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Rj (Fullerenes and related materials)  
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. JQ18004), the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2018YFB0703600), the National Natural Science Foundation of China (Grant No. 51772012), Shenzhen Peacock Plan Team (Grant No. KQTD2016022619565991), and 111 Project (Grant No. B17002). This work was also supported by the National Postdoctoral Program for Innovative Talents, China (Grant No. BX20200028) and the high performance computing (HPC) resources at Beihang University. L.D.Z. thanks for the support from the National Science Fund for Distinguished Young Scholars (Grant No. 51925101).
Corresponding Authors:  Li-Dong Zhao     E-mail:  zhaolidong@buaa.edu.cn

Cite this article: 

Caiyun Li(李彩云), Wenke He(何文科), Dongyang Wang(王东洋), and Li-Dong Zhao(赵立东) Anisotropic thermoelectric transport properties in polycrystalline SnSe2 2021 Chin. Phys. B 30 067101

[1] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[2] Zhang X and Zhao L D 2015 Journal of Materiomics 1 92
[3] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[4] Wang Y N, Chen S P, Fan W H, Guo J Y, Wu Y C and Wang W X 2020 Acta Phys. Sin. 69 246801 (in Chinese)
[5] Zheng L X, Hu J F and Luo J 2020 Acta Phys. Sin. 69 247102 (in Chinese)
[6] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C and Kanatzidis M G 2004 Science 303 818
[7] Sfeir M Y, Beetz T, Wang F, et al. 2008 Science 312 554
[8] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[9] Pei Y, Wang H and Snyder G J 2012 Adv Mater 24 6125
[10] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N and Kanatzidis M G 2012 Nature 489 414
[11] Li W, Zheng L, Ge B, Lin S, Zhang X, Chen Z and Pei Y 2017 Adv. Mater. 29 17
[12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C and Kanatzidis M G 2014 Nature 508 373
[13] Zhao L D, Tan G, Hao S Q, He J Q, Pei Y L, Chi H, Wang H, Gong S K, Xu H B, Dravid V P, Uher C, Snyder G J, Wolverton C andKanatzidis M G 2015 Science 351 141
[14] Chang C, Wu M, He D, et al. 2018 Science 360 778
[15] Wu D, Pei Y, Wang Z, Wu H, Huang L, Zhao L D and He J 2014 Advanced Functional Materials 48 7763
[16] Xiao Y and Zhao L D 2018 npj Quantum Materials 3 1
[17] Xiao Y, Wang D, Zhang Y, Chen C, Zhang S, Wang K and Zhao L D 2020 J. Am. Chem. Soc. 142 4051
[18] Liu C, Huang Z, Wang D, Wang X, Miao L, Wang X and Zhao L D 2019 Journal of Materials Chemistry A 7 9761
[19] Huang Y, Zhou D, Chen X, Liu H, Wang C and Wang S 2016 Chemphyschem 17 375
[20] Fu Li Z Z, Li Y W, Wang W T, Li J F, Li B, Zhoang A H, Luo J T and Fan P 2017 Journal of Materials Science 52 10506
[21] Li J, Jia F, Zhang S, Zheng S, Wang B, Chen L and Wu L 2019 Journal of Materials Chemistry A 7 19316
[22] Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y and Pei Y 2017 Nat. Commun. 8 13828
[23] Qu W W, Zhang X X, Yuan B F and Zhao L D 2017 Rare Metals 37 79
[24] Qin B, Wang D, He W, Zhang Y, Wu H, Pennycook S J and Zhao L D 2019 J. Am. Chem. Soc. 141 1141
[25] Chang C and Zhao L D 2018 Materials Today Physics 4 50
[26] Wang D, Huang Z, Zhang Y, Hao L, Wang G, Deng S and Zhao L D 2020 Science China Materials 63 1759
[27] Pei Y, Chang C, Wang Z, Yin M, Wu M, Tan G and Zhao L D 2016 J. Am. Chem. Soc. 138 16364
[28] Yu P, Yu X, Lu W, Lin H, Sun L, Du K and Liu Z 2016 Advanced Functional Materials 26 137
[29] Sun B Z, Ma Z, He C and Wu K 2015 Phys. Chem. Chem. Phys. 17 29844
[30] Ding Y, Xiao B, Tang G and Hong J 2016 The Journal of Physical Chemistry C 121 225
[31] Saha S, Banik A and Biswas K 2016 Phys. Chem. Chem. Phys. 17 15634
[32] Zhou Y and Zhao L D 2017 Adv. Mater. 29 1702676
[33] Wu Y, Li W, Faghaninia A, Chen Z, Li J, Zhang X and Pei Y 2017 Materials Today Physics 3 127
[34] Zhou W X and Chen K Q 2015 Sci. Rep. 5 15070
[35] Luo Y, Zheng Y, Luo Z, Hao S, Du C, Liang Q and Kanatzidis M G 2018 Advanced Energy Materials 8 1702167
[36] Shu Y, Su X, Xie H, Zheng G, Liu W, Yan Y and Tang X 2018 ACS Appl. Mater. Interfaces 10 15793
[37] Wu S, Liu C, Wu Z, Miao L, Gao J, Hu X and Zhou X 2019 Ceramics International 45 82
[38] Qin B, Zhang Y, Wang D, Zhao Q, Gu B, Wu H and Zhao L D 2020 J. Am. Chem. Soc. 142 5901
[39] Zhang X, Wang D, Wu H, Yin M, Pei Y, Gong S and Zhao L D 2017 Energy & Environmental Science 10 2420
[40] Zhao L D, He J, Wu C I, Hogan T P, Zhou X, Uher C, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 7902
[41] Qin B C X, Zhou Y, Ming Y and Dong Z L 2018 Rare Metals 37 343
[42] Pei Y, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G J 2014 Adv. Energy. Mater. 4 1400486
[43] He W K, Qin B C and Zhao L D 2020 Chin. Phys. Lett. 37 087104
[44] Cutler M, Leavy J F and Fitzpatrick R L 1964 Phys. Rev. 133 A1143
[45] Toberer G S E 2008 Nat. Mater. 7 105
[46] Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X and Zhao L D 2016 Phys. Rev. B 94 125203
[47] Xiao Y, Wu H, Cui J, Wang D, Fu L, Zhang Y and Zhao L D 2018 Energy Environ. Sci. 11 2486
[48] Schrade M, Berland K, Eliassen S N H, Guzik M N, Echevarria-Bonet C, Sorby M H and Finstad T G 2017 Sci. Rep. 7 13760
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[11] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[12] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[13] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
No Suggested Reading articles found!