Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024214    DOI: 10.1088/1674-1056/ac744d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes

Kang Yang(杨康)1, Huiqing Hu(胡回清)1, Jiaojiao Wang(王娇娇)1, Lingling Deng(邓玲玲)2, Yunqing Lu(陆云清)2,†, and Jin Wang(王瑾)1,‡
1 School of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The polarization characteristics of ultrathin CsPbBr3 nanowires are investigated. Especially, for the height of cross-section of nanowires between 2 nm and 25 nm, the normalized intensity and polarization ratio ρ of CsPbBr3 nanowires with triangular, square and hexagonal cross-section shapes are compared. The results show that, along with the increase of the height of cross-section, the polarization ratios of these three nanowires decrease until T=15 nm, and increase afterwards. Also, along with the increase of the cross-section area up to 100 nm2, the polarization ratios of these three nanowires increase too. In general, for the same height or area, the polarization ratio ρ of these nanowires follows ρhexagonsquaretriangle. Therefore, the nanowire with the hexagonal cross-section should be chosen, where for a cross-section height of 2 nm and a length-height ratio of 20:1, the maximal polarization ratio is 0.951 at the longitudinal center of the NW. Further, for the hexagonal NW with a cross-section height of 10 nm, the hexagonal NW with a length-height ratio of 45:1 exhibits the maximal polarization ratio at the longitudinal center of the NW. These simulation results predict the feasible size and shape of CsPbBr3 nanowire devices with high polarization ratios.
Keywords:  CsPbBr3      nanowire      polarization characteristics  
Received:  13 March 2022      Revised:  03 May 2022      Accepted manuscript online:  29 May 2022
PACS:  42.25.Ja (Polarization)  
  42.68.Mj (Scattering, polarization)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Corresponding Authors:  Yunqing Lu, Jin Wang     E-mail:  luyq@njupt.edu.cn;jinwang@njupt.edu.cn

Cite this article: 

Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾) A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes 2023 Chin. Phys. B 32 024214

[1] Song J, Xu L, Li J, et al. 2016 Adv. Mater. 28 4861
[2] Wang Y, Li X, Song J, et al. 2015 Adv. Mater. 27 7101
[3] Song J, Li J, Li X, et al. 2015 Adv. Mater. 27 7162
[4] Wang G, Li D, Cheng H C, et al. 2015 Sci. Adv. 1 e1500613
[5] Chiba T, Hayashi Y, Ebe H, et al. 2018 Nat. Photon. 12 681
[6] Rainó G, Becker M A, Bodnarchuk M I, et al. 2018 Nature 563 671
[7] Guichuan X, Mathews N, Sun S, et al. 2013 Science 342 344
[8] Swarnkar A, Chulliyil R, Ravi V K, et al. 2016 Angew. Chem. Int. Ed. 54 15424
[9] Pan A, He B, Fan X, et al. 2016 ACS Nano 10 7943
[10] Zhang H, Fu D, Du Z, et al. 2020 Ceram. Int. 46 18352
[11] Yang D, Li P, Zou Y, et al. 2019 Chem. Mater. 31 1575
[12] Ruda H E and Shik A 2006 J. Appl. Phys. 100 024314
[13] Maculan G, Sheikh A D, Abdelhady A L, et al. 2015 J. Phys. Chem. Lett. 6 3781
[14] Zhang D, Yu Y, Bekensteinet Y, et al. 2016 J. Am. Chem. Soc. 138 13155
[15] Gao Y, Zhao L, Shang Q, et al. 2018 Adv. Mater. 30 1801805
[16] Zhang L, Zhang Y, He W, et al. 2020 Opt. Mater. 109 110399
[17] Peng Z, Yang D, Yin B, et al. 2021 Sci. China Mater. 64 2261
[18] Ashley M J, O'Brien M N, Hedderick K R, et al. 2016 J. Am. Chem. Soc. 138 10096
[19] Waleed A, Tavakoli M M, Gu L, et al. 2016 Nano Lett. 17 523
[20] Walled A, Tavakoli M M, Gu L, et al. 2017 Nano Lett. 17 523
[21] He H, Cui Y, Li B, et al. 2019 Adv. Mater. 31 1806897
[22] Chen Z, Gu Z, Fu W, et al. 2016 ACS Appl. Mater. Interfaces 8 28737
[23] Deng H, Grunder S, Cordova K E, et al. 2012 Science 336 1018
[24] Chen B and Qian G 2014 Struct. Bonding (Berlin, Ger.) 157 105
[25] Park K S, Ni Z, Coté A P, et al. 2006 Proc. Natl. Acad. Sci. USA 103 10186
[26] Ying W, Mao Y, Wang X, et al. 2017 ChemSusChem 10 1346
[27] Wang J, Zhang Y, Yu Y, et al. 2019 Opt. Mater. 89 209
[28] Wang J, Zhang Y, Ye F, et al. 2019 Polym. Int. 68 772
[29] He H, Ma E, Cui Y, et al. 2016 Nat. Commun. 7 11087
[30] Wang J, Ye F, Huang Z, et al. 2018 Opt. Mater. Express 8 2901
[31] Perego J, Bezuidenhout C X, Pedrini A, et al. 2020 J. Mater. Chem. A 8 11406
[32] Jeong Y, Pan L, Huang X, et al. 2011 Adv. Funct. Mater. 21 993
[33] Shao Z, Xiong G, Tong J, et al. 2001 Sep. Purif. Technol. 25 419
[34] Vouilloz F, OberLi D Y, Dupertuis M A, et al. 1997 Phys. Rev. Lett. 78 1580
[35] Jameson D M and Ross J A 2010 Chem. Rev. 110 2685
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[3] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[4] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[5] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[6] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[7] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[8] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[11] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[12] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[13] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
No Suggested Reading articles found!