Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management |
Ran Huang(黄冉)1,2, Jiaming Zhang(张家明)1,2, Fangfang Xu(徐芳芳)1,2, Jie Liu(刘杰)1,2, Huijun Yao(姚会军)1,2,3,4, Yonghui Chen(陈永辉)1,2,3,4, and Jinglai Duan(段敬来)1,2,3,4,† |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China; 4 Huizhou Research Center of Ion Sciences, Huizhou 516000, China |
|
|
Abstract Integrating nanowires with nonuniform diameter and random spatial distribution into an array can afford unconventional and additional means for modulating optical response. However, experimental realization of such a nanowire array is quite challenging. In this work, we propose a new fabrication strategy which takes advantage of ion track technology, via sequential swift heavy ion irradiation and ion track etching. Based on this strategy, we unprecedentedly realize nanowire arrays, using gold as an example, with gradient and programmable diameters in a controlled manner. We further demonstrate that such nanowire arrays can support broadband, tunable, and enhanced plasmonic responses. We believe that our new type of nanowire arrays will find great potential in applications such as light management and optoelectronic devices.
|
Received: 01 March 2021
Revised: 23 March 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
62.23.Hj
|
(Nanowires)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
87.80.Cc
|
(Optical trapping)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1932210, 12005270, and 11975114). |
Corresponding Authors:
Jinglai Duan
E-mail: j.duan@impcas.ac.cn
|
Cite this article:
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来) Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management 2021 Chin. Phys. B 30 086105
|
[1] Leung S F, Zhang Q, Xiu F, Yu D, Ho J C, Li D and Fan Z 2014 J. Phys. Chem. Lett. 5 1479 [2] Wang W and Qi L 2019 Adv. Funct. Mater. 29 1807275 [3] Villa K, Novotný F, Zelenka J, Browne M P, Ruml T and Pumera M 2019 ACS Nano 13 8135 [4] Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J and Tang J 2017 Adv. Mater. 29 1701451 [5] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665 [6] Han J, Yang D, Ma D, Qiao W and Wang Z Y 2018 Adv. Opt. Mater. 6 1800038 [7] Zhong Z, Li X, Wu J, Li C, Xie R B, Yuan X, Niu X, Wang W, Luo X, Zhang G, Wang Z M, Tan H H and Jagadish C 2019 Appl. Phys. Lett. 115 053101 [8] Garin M, Heinonen J, Werner L, Pasanen T P, Vahanissi V, Haarahiltunen A, Juntunen M A and Savin H 2020 Phys. Rev. Lett. 125 117702 [9] Wang Y, Li H, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 078502 [10] Guo D, Li W, Wang D, Meng B, Fang D and Wei Z 2020 Chin. Phys. B 29 098504 [11] Li W, An Y, Wienk M M and Janssen R A J 2015 J. Mater. Chem. A 3 6756 [12] Negash A, Genene Z, Thiruvallur Eachambadi R, Kesters J, Van den Brande N, D'Haen J, Penxten H, Abdulahi B A, Wang E, Vandewal K, Maes W, Mammo W, Manca J and Admassie S 2019 J. Mater. Chem. C 7 3375 [13] Rodrigo D, Limaj O, Janner D, Etezadi D, Garcia de Abajo J, Pruneri V and Altug H 2015 Science 349 165 [14] Fu X, Ren F F, Sun S, Tian Y, Wu Y, Lou P and Du Q G 2019 Phys. Scripta 94 055504 [15] Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C and Miotello A 2015 Appl. Catal. B Environ. 168 333 [16] Momeni M M, Ghayeb Y and Gheibee S 2017 Ceram. Int. 43 564 [17] Feng K, Wang S, Zhang D, Wang L, Yu Y, Feng K, Li Z, Zhu Z, Li C, Cai M, Wu Z, Kong N, Yan B, Zhong J, Zhang X, Ozin G A and He L 2020 Adv. Mater. 32 2000014 [18] Zheng J, Wang J, Xiong Z, Wan Z, Zhan X, Yang S, Chen J, Dai J and Tang J 2019 Adv. Funct. Mater. 29 1901768 [19] Liu C, Zhang H, Sun Z, Ding K, Mao J, Shao Z and Jie J 2016 J. Mater. Chem. C 4 5648 [20] Shang Q, Li C, Zhang S, Liang Y, Liu Z, Liu X and Zhang Q 2020 Nano Lett. 20 1023 [21] Yu P, Wu J, Liu S, Xiong J, Jagadish C and Wang Z M 2016 Nano Today 11 704 [22] Cao L, White J S, Park J S, Schuller J A, Clemens B M and Brongersma M L 2009 Nat. Mater. 8 643 [23] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S and Brongersma M L 2010 Nano Lett. 10 439 [24] Zheng J, Dai B, Wang J, Xiong Z, Yang Y, Liu J, Zhan X, Wan Z and Tang J 2017 Nat. Commun. 8 1438 [25] Bao H and Ruan X 2010 Opt. Lett. 35 3378 [26] Sturmberg B C P, Dossou K B, Botten L C, Asatryan A A, Poulton C G, McPhedran R C and Martijn de Sterke C 2012 Appl. Phys. Lett. 101 173902 [27] Hong L, Rusli, Wang X, Zheng H, Wang H and Yu H 2014 J. Appl. Phys. 116 194302 [28] Lin C and Povinelli M 2011 Opt. Express 19 A1148 [29] Fink D 2004 Transport Processes in Ion-Irradiated Polymers, 1st edn. (New York: Springer-Verlag) pp. 171-200 [30] Fleischer R L, Price P B and Walker R M 1975 Nuclear Tracks in Solids: Principles and Applications, 1st edn. (California: Berkeley) p. 20 [31] Duan J L, Liu J, Yao H J, Mo D, Hou M D, Sun Y M, Chen Y F and Zhang L 2008 Mater. Sci. Eng. B 147 57 [32] Liu J, Duan J L, Toimil-Molares M E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G and Neumann R 2006 Nanotechnology 17 1922 [33] Toimil-Molares M E 2012 Beilstein J. Nanotechnol. 3 860 [34] Giannini V, Fernandez-Dominguez A I, Heck S C and Maier S A 2011 Chem. Rev. 111 3888 [35] Wen L, Xu R, Mi Y and Lei Y 2017 Nat. Nanotechnol. 12 244 [36] Fountaine K T, Kendall C G and Atwater H A 2014 Opt. Express 22 A930 [37] Du Q G, Kam C H, Demir H V, Yu H Y and Sun X W 2011 Opt. Lett. 36 1884 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|