Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086105    DOI: 10.1088/1674-1056/ac078a
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management

Ran Huang(黄冉)1,2, Jiaming Zhang(张家明)1,2, Fangfang Xu(徐芳芳)1,2, Jie Liu(刘杰)1,2, Huijun Yao(姚会军)1,2,3,4, Yonghui Chen(陈永辉)1,2,3,4, and Jinglai Duan(段敬来)1,2,3,4,†
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China;
4 Huizhou Research Center of Ion Sciences, Huizhou 516000, China
Abstract  Integrating nanowires with nonuniform diameter and random spatial distribution into an array can afford unconventional and additional means for modulating optical response. However, experimental realization of such a nanowire array is quite challenging. In this work, we propose a new fabrication strategy which takes advantage of ion track technology, via sequential swift heavy ion irradiation and ion track etching. Based on this strategy, we unprecedentedly realize nanowire arrays, using gold as an example, with gradient and programmable diameters in a controlled manner. We further demonstrate that such nanowire arrays can support broadband, tunable, and enhanced plasmonic responses. We believe that our new type of nanowire arrays will find great potential in applications such as light management and optoelectronic devices.
Keywords:  ion track technology      nanowire      plasmonics      light management  
Received:  01 March 2021      Revised:  23 March 2021      Accepted manuscript online:  03 June 2021
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  62.23.Hj (Nanowires)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  87.80.Cc (Optical trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1932210, 12005270, and 11975114).
Corresponding Authors:  Jinglai Duan     E-mail:  j.duan@impcas.ac.cn

Cite this article: 

Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来) Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management 2021 Chin. Phys. B 30 086105

[1] Leung S F, Zhang Q, Xiu F, Yu D, Ho J C, Li D and Fan Z 2014 J. Phys. Chem. Lett. 5 1479
[2] Wang W and Qi L 2019 Adv. Funct. Mater. 29 1807275
[3] Villa K, Novotný F, Zelenka J, Browne M P, Ruml T and Pumera M 2019 ACS Nano 13 8135
[4] Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J and Tang J 2017 Adv. Mater. 29 1701451
[5] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
[6] Han J, Yang D, Ma D, Qiao W and Wang Z Y 2018 Adv. Opt. Mater. 6 1800038
[7] Zhong Z, Li X, Wu J, Li C, Xie R B, Yuan X, Niu X, Wang W, Luo X, Zhang G, Wang Z M, Tan H H and Jagadish C 2019 Appl. Phys. Lett. 115 053101
[8] Garin M, Heinonen J, Werner L, Pasanen T P, Vahanissi V, Haarahiltunen A, Juntunen M A and Savin H 2020 Phys. Rev. Lett. 125 117702
[9] Wang Y, Li H, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y and Wang Z 2019 Chin. Phys. B 28 078502
[10] Guo D, Li W, Wang D, Meng B, Fang D and Wei Z 2020 Chin. Phys. B 29 098504
[11] Li W, An Y, Wienk M M and Janssen R A J 2015 J. Mater. Chem. A 3 6756
[12] Negash A, Genene Z, Thiruvallur Eachambadi R, Kesters J, Van den Brande N, D'Haen J, Penxten H, Abdulahi B A, Wang E, Vandewal K, Maes W, Mammo W, Manca J and Admassie S 2019 J. Mater. Chem. C 7 3375
[13] Rodrigo D, Limaj O, Janner D, Etezadi D, Garcia de Abajo J, Pruneri V and Altug H 2015 Science 349 165
[14] Fu X, Ren F F, Sun S, Tian Y, Wu Y, Lou P and Du Q G 2019 Phys. Scripta 94 055504
[15] Jaiswal R, Bharambe J, Patel N, Dashora A, Kothari D C and Miotello A 2015 Appl. Catal. B Environ. 168 333
[16] Momeni M M, Ghayeb Y and Gheibee S 2017 Ceram. Int. 43 564
[17] Feng K, Wang S, Zhang D, Wang L, Yu Y, Feng K, Li Z, Zhu Z, Li C, Cai M, Wu Z, Kong N, Yan B, Zhong J, Zhang X, Ozin G A and He L 2020 Adv. Mater. 32 2000014
[18] Zheng J, Wang J, Xiong Z, Wan Z, Zhan X, Yang S, Chen J, Dai J and Tang J 2019 Adv. Funct. Mater. 29 1901768
[19] Liu C, Zhang H, Sun Z, Ding K, Mao J, Shao Z and Jie J 2016 J. Mater. Chem. C 4 5648
[20] Shang Q, Li C, Zhang S, Liang Y, Liu Z, Liu X and Zhang Q 2020 Nano Lett. 20 1023
[21] Yu P, Wu J, Liu S, Xiong J, Jagadish C and Wang Z M 2016 Nano Today 11 704
[22] Cao L, White J S, Park J S, Schuller J A, Clemens B M and Brongersma M L 2009 Nat. Mater. 8 643
[23] Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S and Brongersma M L 2010 Nano Lett. 10 439
[24] Zheng J, Dai B, Wang J, Xiong Z, Yang Y, Liu J, Zhan X, Wan Z and Tang J 2017 Nat. Commun. 8 1438
[25] Bao H and Ruan X 2010 Opt. Lett. 35 3378
[26] Sturmberg B C P, Dossou K B, Botten L C, Asatryan A A, Poulton C G, McPhedran R C and Martijn de Sterke C 2012 Appl. Phys. Lett. 101 173902
[27] Hong L, Rusli, Wang X, Zheng H, Wang H and Yu H 2014 J. Appl. Phys. 116 194302
[28] Lin C and Povinelli M 2011 Opt. Express 19 A1148
[29] Fink D 2004 Transport Processes in Ion-Irradiated Polymers, 1st edn. (New York: Springer-Verlag) pp. 171-200
[30] Fleischer R L, Price P B and Walker R M 1975 Nuclear Tracks in Solids: Principles and Applications, 1st edn. (California: Berkeley) p. 20
[31] Duan J L, Liu J, Yao H J, Mo D, Hou M D, Sun Y M, Chen Y F and Zhang L 2008 Mater. Sci. Eng. B 147 57
[32] Liu J, Duan J L, Toimil-Molares M E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G and Neumann R 2006 Nanotechnology 17 1922
[33] Toimil-Molares M E 2012 Beilstein J. Nanotechnol. 3 860
[34] Giannini V, Fernandez-Dominguez A I, Heck S C and Maier S A 2011 Chem. Rev. 111 3888
[35] Wen L, Xu R, Mi Y and Lei Y 2017 Nat. Nanotechnol. 12 244
[36] Fountaine K T, Kendall C G and Atwater H A 2014 Opt. Express 22 A930
[37] Du Q G, Kam C H, Demir H V, Yu H Y and Sun X W 2011 Opt. Lett. 36 1884
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[5] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[8] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[9] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[10] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[11] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[12] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[13] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[14] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[15] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
No Suggested Reading articles found!