CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon |
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾)† |
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract Organic/inorganic hybrid van der Waals heterostructure with an atomically abrupt interface has attracted great research interests within the field of multifunctional electronic and optoelectronic devices. The integration of organic rubrene films with inorganic Si semiconductors can avoid the atomic mutual-diffusion at the interface, and provide the possibility of forming two-dimensional van der Waals heterojunction accompanied with the type-Ⅱ energy band alignment, due to the transfer behaviors of majority carriers at the interface. In this study, the high-quality rubrene/Si van der Waals heterostructure with an electronically abrupt junction was prepared, and a self-powered photodetector was then constructed based on this hybrid heterojunction. The photodetector demonstrated an excellent switching response to the 1064 nm monochromatic light with large on/off current ratio of 7.0×103, the maximum photocurrent of 14.62 mA, the maximum responsivity of 2.07 A/W, the maximum detectivity of 2.9×1011 Jones, and a fast response time of 13.0 μs. This study offers important guidance for preparing high-quality rubrene/Si hybrid van der Waals heterostructure with desirable band alignment, and the designed heterojunction photodetector has an important application prospect in the field of multifunctional optoelectronics.
|
Received: 03 March 2021
Revised: 18 March 2021
Accepted manuscript online: 30 March 2021
|
PACS:
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.05.Fb
|
(Organic semiconductors)
|
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604228, 11774208, and 11974222), the Science and Technology Planning Foundation of Shandong Province, China (Grant No. J18KA219). |
Corresponding Authors:
Hongbin Zhang
E-mail: hbzhang@sdnu.edu.cn
|
Cite this article:
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾) High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon 2021 Chin. Phys. B 30 077304
|
[1] Yang T F, Wang X and Zheng B Y 2019 ACS Nano 13 7996 [2] Hu W and Yang J L 2017 J. Mater. Chem. C 5 12289 [3] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K and Li Z L 2019 Phys. Lett. A 383 867 [4] Shin G H, Park C, Lee K J, Jin H J and Choi S Y 2020 Nano Lett. 20 5741 [5] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [6] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H and Lee Y H 2019 Adv. Mater. 31 1807075 [7] Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101 [8] Gobbi M, Orgiu E and Samori P 2018 Adv. Mater. 30 1706103 [9] He D W, Pan Y M, Nan H Y, Gu S, Yang Z Y, Wu B, Luo X G, Xu B C, Zhang Y H, Li Y, Ni Z H, Wang B G, Zhu J, Chai Y, Shi Y and Wang X R 2015 Appl. Phys. Lett. 107 183103 [10] Liu Y, Huang Y and Duan X F 2019 Nature 567 323 [11] Wu F, Xia H, Sun H D, Zhang J W, Gong F, Wang Z, Chen L, Wang P, Long M S, Wu X, Wang J L, Ren W C, Chen X S, Lu W and Hu W D 2019 Adv. Funct. Mater. 29 1900314 [12] Zheng W H, Zheng B Y and Jiang Y et al. 2019 Nano Lett. 19 7217 [13] Zhang L L, Sharma A, Zhu Y, Zhang Y H, Wang B W, Dong M H, Nguyen H T, Wang Z, Wen B, Cao Y J, Liu B Q, Sun X Q, Yang J, Li Z Y, Kar A, Shi Y, Macdonald D, Yu Z F, Wang X R and Lu Y R 2018 Adv. Mater. 30 1803986 [14] Bellus M Z, Li M, Lane S D, Ceballos F, Cui Q N, Zeng X C and Zhao H 2017 Nanoscale Horiz. 2 31 [15] Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K and Dai N 2016 ACS Nano 10 3852 [16] Wang Y J, Wang L, Liu F J, Peng Z H, Zhang Y D and Jiang C 2020 Org. Electron. 83 105778 [17] Sun J, Choi Y, Choi Y J, Kim S, Park J H, Lee S and Cho J H 2019 Adv. Mater. 31 1803831 [18] Zhu L B, Lu L, Wang H Y, Fan G C, Chen Y T, Zhang J D and Zhao W W 2019 Biosens. Bioelectron. 140 111349 [19] Borges-González J, Kousseff C J and Nielsen C B 2019 J. Mater. Chem. C 7 1111 [20] Fahlman M, Fabiano S, Gueskine V, Simon D, Berggren M and Crispin X 2019 Nat. Rev. Mater. 4 627 [21] Li D, Dong G F, Li W Z and Wang L D 2015 Sci. Rep. 5 07902 [22] Wu Y L, Fukuda K, Yokota T and Someya T 2019 Adv. Mater. 31 1903687 [23] Fusella M A, Schreiber F, Abbasi K, Kim J J, Briseno A L and Rand B P 2017 Nano Lett. 17 3040 [24] Reyes-Martinez M A, Ramasubramaniam A, Briseno A L and Crosby A J 2012 Adv. Mater. 24 5548 [25] Chung S J, McHugh C J and Calvo-Castro J 2019 J. Mater. Chem. C 7 2029 [26] Irkhin P, Ryasnyanskiy A, Koehler M and Biaggio I 2012 Phys. Rev. B 86 085143 [27] Gogoi D, Hussain A A, Biswasi S and Pal A R 2020 J. Mater. Chem. C 8 6450 [28] Zhao Y P, Yu W B and Ouyang G 2018 J. Phys. D: Appl. Phys. 51 015111 [29] Zheng W H, Zheng B Y, Yan C L, Liu Y, Sun X X, Qi Z Y, Yang T F, Jiang Y, Huang W, Fan P, Jiang F, Ji W, Wang X and Pan A L 2019 Adv. Sci. 6 1802204 [30] Udhardt C, Forker R, Gruenewald M, Watanabe Y, Yamada T, Ueba T, Munakata T and Fritz T 2016 Thin Solid Films 598 271 [31] Lin K Y, Wang Y J, Chen K L, Ho C Y, Yang C C, Shen J L and Chiu K C 2017 Sci. Rep. 7 40824 [32] Djuric T, Thierry A, Grogger W, Abd Al-Baqi S M, Sitter H and Resel R 2009 Physica E 41 1718 [33] Wang C H, Islam A K M M, Yang Y W, Wu T Y, Lue J W, Hsu C H, Sinha S and Mukherjee M 2013 Langmuir 29 3957 [34] Zhang P Q, Zeng X H, Deng J C, Huang K, Bao F, Qiu Y X, Xu K and Zhang J P 2010 Jpn. J. Appl. Phys. 49 095501 [35] Singh N, Arish M, Kumar P, Rub A and Riaz U 2020 Sci. Rep. 10 57 [36] Goldie D M and Persheyev S K 2006 J. Mater. Sci. 41 5287 [37] Orduña-Diaz A, Treviño-Palacios C G, Rojas-Lopez M, Delgado-Macuil R, Gayou V L and Torres-Jacome A 2010 Mater. Sci. Eng. B 174 93 [38] Zhou X W, Ishida M, Imanishi A and Nakato Y 2001 J. Phys. Chem. B 105 156 [39] Strauss I, Chakarova K, Mundstock A, Mihaylov M, Hadjiivanov K, Guschanski N and Caro J 2020 Microporous Mesoporous Mater. 302 110227 [40] Uddin A, Lee C B and Wong J 2011 J. Lumin. 131 1037 [41] Goto K, Takayama T, Ohata K, Matsushita K and Akimoto I 2019 J. Lumin. 205 46 [42] Burke F, Stamenov P and Coey J M D 2011 Synth. Met. 161 563 [43] Liu C, Zhang H B, Sun Z, Ding K, Mao J, Shao Z B and Jie J S 2016 J. Mater. Chem. C 4 5648 [44] Xie C, Liu C K, Loi H L and Yan F 2019 Adv. Funct. Mater. 30 1903907 [45] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209 [46] Chowdhury A M, Chandan G, Pant R, Roul B, Singh D K, Nanda K K and Krupanidhi S B 2019 ACS Appl. Mater. Interfaces 11 33390 [47] Liu B, Tang B, Lv F J, Zeng Y, Liao J H, Wang S and Chen Q 2019 Nanotechnology 31 065203 [48] Liu Q R, Jian L H, Liu R Q, Yang H X, Kong J M and Zhang X J 2020 Chem. Eur. J. A 26 1633 [49] Kielar M, Hamid T, Wiemer M, Windels F, Hirsch L, Sah P and Pandey A K 2019 Adv. Funct. Mater. 30 1907964 [50] Zhu W G, Zhang D Z, Bai S M, Shi Q, Hu W P and Fu H B 2020 Adv. Opt. Mater. 8 2000866 [51] Cho E H, Song W G, Park C J, Kim J, Kim S and Joo J 2015 Nano Res. 8 790 [52] Jones G F, Pinto R M, De Sanctis A, Nagareddy V K, Wright C D, Alves H, Craciun M F and Russo S 2017 Adv. Mater. 29 1702993 [53] Biswasi S and Pal A R 2019 Plasma Chem. Plasma Process. 40 371 [54] Du Q Q, Qin S C, Wang W J, Guo Y Y, Ye J D, Zhu S M, Tang K, Zhang R, Zheng Y D and Gu S L 2019 Nanotechnolgy 30 065202 [55] Huang J, Wang L J, Tang K, Xu R, Zhang J J, Lu X G and Xia Y B 2011 Chin. Phys. Lett. 28 127301 [56] Wang Z K, Naka S and Okada H 2010 Appl. Phys. A 100 1103 [57] He X X, Chow W L, Liu F C, Tay B K and Liu Z 2017 Small 13 1602558 [58] Fan H J, Zhang H Q, Wu J J, Wen Z F and Ma F Y 2011 Chin. Phys. Lett. 28 127305 [59] Zhao Y P and Ouyang G 2019 Sci. Rep. 9 17381 [60] Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X and Yang G W 2014 Sci. Rep. 4 05876 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|