Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077304    DOI: 10.1088/1674-1056/abf345
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon

Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾)
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  Organic/inorganic hybrid van der Waals heterostructure with an atomically abrupt interface has attracted great research interests within the field of multifunctional electronic and optoelectronic devices. The integration of organic rubrene films with inorganic Si semiconductors can avoid the atomic mutual-diffusion at the interface, and provide the possibility of forming two-dimensional van der Waals heterojunction accompanied with the type-Ⅱ energy band alignment, due to the transfer behaviors of majority carriers at the interface. In this study, the high-quality rubrene/Si van der Waals heterostructure with an electronically abrupt junction was prepared, and a self-powered photodetector was then constructed based on this hybrid heterojunction. The photodetector demonstrated an excellent switching response to the 1064 nm monochromatic light with large on/off current ratio of 7.0×103, the maximum photocurrent of 14.62 mA, the maximum responsivity of 2.07 A/W, the maximum detectivity of 2.9×1011 Jones, and a fast response time of 13.0 μs. This study offers important guidance for preparing high-quality rubrene/Si hybrid van der Waals heterostructure with desirable band alignment, and the designed heterojunction photodetector has an important application prospect in the field of multifunctional optoelectronics.
Keywords:  rubrene      van der Waals heterojunction      photodetector      band alignment  
Received:  03 March 2021      Revised:  18 March 2021      Accepted manuscript online:  30 March 2021
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.05.Fb (Organic semiconductors)  
  73.25.+i (Surface conductivity and carrier phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604228, 11774208, and 11974222), the Science and Technology Planning Foundation of Shandong Province, China (Grant No. J18KA219).
Corresponding Authors:  Hongbin Zhang     E-mail:  hbzhang@sdnu.edu.cn

Cite this article: 

Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾) High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon 2021 Chin. Phys. B 30 077304

[1] Yang T F, Wang X and Zheng B Y 2019 ACS Nano 13 7996
[2] Hu W and Yang J L 2017 J. Mater. Chem. C 5 12289
[3] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K and Li Z L 2019 Phys. Lett. A 383 867
[4] Shin G H, Park C, Lee K J, Jin H J and Choi S Y 2020 Nano Lett. 20 5741
[5] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[6] Tran M D, Kim H, Kim J S, Doan M H, Chau T K, Vu Q A, Kim J H and Lee Y H 2019 Adv. Mater. 31 1807075
[7] Liu J, Ma Y Q, Dai Y W, Chen Y, Li Y, Tang Y N and Dai X Q 2019 Chin. Phys. B 28 107101
[8] Gobbi M, Orgiu E and Samori P 2018 Adv. Mater. 30 1706103
[9] He D W, Pan Y M, Nan H Y, Gu S, Yang Z Y, Wu B, Luo X G, Xu B C, Zhang Y H, Li Y, Ni Z H, Wang B G, Zhu J, Chai Y, Shi Y and Wang X R 2015 Appl. Phys. Lett. 107 183103
[10] Liu Y, Huang Y and Duan X F 2019 Nature 567 323
[11] Wu F, Xia H, Sun H D, Zhang J W, Gong F, Wang Z, Chen L, Wang P, Long M S, Wu X, Wang J L, Ren W C, Chen X S, Lu W and Hu W D 2019 Adv. Funct. Mater. 29 1900314
[12] Zheng W H, Zheng B Y and Jiang Y et al. 2019 Nano Lett. 19 7217
[13] Zhang L L, Sharma A, Zhu Y, Zhang Y H, Wang B W, Dong M H, Nguyen H T, Wang Z, Wen B, Cao Y J, Liu B Q, Sun X Q, Yang J, Li Z Y, Kar A, Shi Y, Macdonald D, Yu Z F, Wang X R and Lu Y R 2018 Adv. Mater. 30 1803986
[14] Bellus M Z, Li M, Lane S D, Ceballos F, Cui Q N, Zeng X C and Zhao H 2017 Nanoscale Horiz. 2 31
[15] Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K and Dai N 2016 ACS Nano 10 3852
[16] Wang Y J, Wang L, Liu F J, Peng Z H, Zhang Y D and Jiang C 2020 Org. Electron. 83 105778
[17] Sun J, Choi Y, Choi Y J, Kim S, Park J H, Lee S and Cho J H 2019 Adv. Mater. 31 1803831
[18] Zhu L B, Lu L, Wang H Y, Fan G C, Chen Y T, Zhang J D and Zhao W W 2019 Biosens. Bioelectron. 140 111349
[19] Borges-González J, Kousseff C J and Nielsen C B 2019 J. Mater. Chem. C 7 1111
[20] Fahlman M, Fabiano S, Gueskine V, Simon D, Berggren M and Crispin X 2019 Nat. Rev. Mater. 4 627
[21] Li D, Dong G F, Li W Z and Wang L D 2015 Sci. Rep. 5 07902
[22] Wu Y L, Fukuda K, Yokota T and Someya T 2019 Adv. Mater. 31 1903687
[23] Fusella M A, Schreiber F, Abbasi K, Kim J J, Briseno A L and Rand B P 2017 Nano Lett. 17 3040
[24] Reyes-Martinez M A, Ramasubramaniam A, Briseno A L and Crosby A J 2012 Adv. Mater. 24 5548
[25] Chung S J, McHugh C J and Calvo-Castro J 2019 J. Mater. Chem. C 7 2029
[26] Irkhin P, Ryasnyanskiy A, Koehler M and Biaggio I 2012 Phys. Rev. B 86 085143
[27] Gogoi D, Hussain A A, Biswasi S and Pal A R 2020 J. Mater. Chem. C 8 6450
[28] Zhao Y P, Yu W B and Ouyang G 2018 J. Phys. D: Appl. Phys. 51 015111
[29] Zheng W H, Zheng B Y, Yan C L, Liu Y, Sun X X, Qi Z Y, Yang T F, Jiang Y, Huang W, Fan P, Jiang F, Ji W, Wang X and Pan A L 2019 Adv. Sci. 6 1802204
[30] Udhardt C, Forker R, Gruenewald M, Watanabe Y, Yamada T, Ueba T, Munakata T and Fritz T 2016 Thin Solid Films 598 271
[31] Lin K Y, Wang Y J, Chen K L, Ho C Y, Yang C C, Shen J L and Chiu K C 2017 Sci. Rep. 7 40824
[32] Djuric T, Thierry A, Grogger W, Abd Al-Baqi S M, Sitter H and Resel R 2009 Physica E 41 1718
[33] Wang C H, Islam A K M M, Yang Y W, Wu T Y, Lue J W, Hsu C H, Sinha S and Mukherjee M 2013 Langmuir 29 3957
[34] Zhang P Q, Zeng X H, Deng J C, Huang K, Bao F, Qiu Y X, Xu K and Zhang J P 2010 Jpn. J. Appl. Phys. 49 095501
[35] Singh N, Arish M, Kumar P, Rub A and Riaz U 2020 Sci. Rep. 10 57
[36] Goldie D M and Persheyev S K 2006 J. Mater. Sci. 41 5287
[37] Orduña-Diaz A, Treviño-Palacios C G, Rojas-Lopez M, Delgado-Macuil R, Gayou V L and Torres-Jacome A 2010 Mater. Sci. Eng. B 174 93
[38] Zhou X W, Ishida M, Imanishi A and Nakato Y 2001 J. Phys. Chem. B 105 156
[39] Strauss I, Chakarova K, Mundstock A, Mihaylov M, Hadjiivanov K, Guschanski N and Caro J 2020 Microporous Mesoporous Mater. 302 110227
[40] Uddin A, Lee C B and Wong J 2011 J. Lumin. 131 1037
[41] Goto K, Takayama T, Ohata K, Matsushita K and Akimoto I 2019 J. Lumin. 205 46
[42] Burke F, Stamenov P and Coey J M D 2011 Synth. Met. 161 563
[43] Liu C, Zhang H B, Sun Z, Ding K, Mao J, Shao Z B and Jie J S 2016 J. Mater. Chem. C 4 5648
[44] Xie C, Liu C K, Loi H L and Yan F 2019 Adv. Funct. Mater. 30 1903907
[45] Sun L, Wang L, Lu J L, Liu J, Fang J, Xie L L, Hao Z B, Jia H Q, Wang W X and Chen H 2018 Chin. Phys. B 27 047209
[46] Chowdhury A M, Chandan G, Pant R, Roul B, Singh D K, Nanda K K and Krupanidhi S B 2019 ACS Appl. Mater. Interfaces 11 33390
[47] Liu B, Tang B, Lv F J, Zeng Y, Liao J H, Wang S and Chen Q 2019 Nanotechnology 31 065203
[48] Liu Q R, Jian L H, Liu R Q, Yang H X, Kong J M and Zhang X J 2020 Chem. Eur. J. A 26 1633
[49] Kielar M, Hamid T, Wiemer M, Windels F, Hirsch L, Sah P and Pandey A K 2019 Adv. Funct. Mater. 30 1907964
[50] Zhu W G, Zhang D Z, Bai S M, Shi Q, Hu W P and Fu H B 2020 Adv. Opt. Mater. 8 2000866
[51] Cho E H, Song W G, Park C J, Kim J, Kim S and Joo J 2015 Nano Res. 8 790
[52] Jones G F, Pinto R M, De Sanctis A, Nagareddy V K, Wright C D, Alves H, Craciun M F and Russo S 2017 Adv. Mater. 29 1702993
[53] Biswasi S and Pal A R 2019 Plasma Chem. Plasma Process. 40 371
[54] Du Q Q, Qin S C, Wang W J, Guo Y Y, Ye J D, Zhu S M, Tang K, Zhang R, Zheng Y D and Gu S L 2019 Nanotechnolgy 30 065202
[55] Huang J, Wang L J, Tang K, Xu R, Zhang J J, Lu X G and Xia Y B 2011 Chin. Phys. Lett. 28 127301
[56] Wang Z K, Naka S and Okada H 2010 Appl. Phys. A 100 1103
[57] He X X, Chow W L, Liu F C, Tay B K and Liu Z 2017 Small 13 1602558
[58] Fan H J, Zhang H Q, Wu J J, Wen Z F and Ma F Y 2011 Chin. Phys. Lett. 28 127305
[59] Zhao Y P and Ouyang G 2019 Sci. Rep. 9 17381
[60] Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X and Yang G W 2014 Sci. Rep. 4 05876
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[5] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[6] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[9] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[10] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[11] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[12] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[13] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[14] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[15] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
No Suggested Reading articles found!