1 Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract The effects of dry O2 post oxidation annealing (POA) at different temperatures on SiC/SiO2 stacks are comparatively studied in this paper. The results show interface trap density (Dit) of SiC/SiO2 stacks, leakage current density (Jg), and time-dependent dielectric breakdown (TDDB) characteristics of the oxide, are affected by POA temperature and are closely correlated. Specifically, Dit, Jg, and inverse median lifetime of TDDB have the same trend against POA temperature, which is instructive for SiC/SiO2 interface quality improvement. Moreover, area dependence of TDDB characteristics for gate oxide on SiC shows different electrode areas lead to same slope of TDDB Weibull curves.
Fund: Project supported by the General Program of the National Natural Science Foundation of China (Grant No. 61974159) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences and Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20200039).
Corresponding Authors:
Sheng-Kai Wang, Yun Bai
E-mail: wangshengkai@ime.ac.cn;baiyun@ime.ac.cn
Cite this article:
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇) Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors 2021 Chin. Phys. B 30 077303
[1] Cooper J A and Agarwal A 2002 Proc. IEEE90 956 [2] Liu X Y, Hao J L, You N N, Bai Y and Wang S K 2019 AIP Adv.9 125150 [3] Liu X Y, Hao J L, You N N, Bai Y, Tang Y D, Yang C Y and Wang S K 2020 Chin. Phys. B29 037301 [4] Gao K Y, Seyller T, Emtsev K V, Ley L, Ciobanu F and Pensl G 2005 Mat. Sci. Forum483-485 559 [5] Renz A B, Vavasour O J, Gammon P M, Li F, Dai T, Esfahani S, Baker G W C, Grant N E, Murphy J D, Mawby P A and Shah V A 2020 Mater. Sci. Forum1004 547 [6] Zhang F, Yang W F, Huang H L, Chen X P, Wu Z Y, Zhu H L, Qi H J, Yao J K, Fan Z X and Shao J D 2008 Appl. Phys. Lett.92 251102 [7] Zhang Y J, Yin Z P, Su Y and Wang D J 2018 Chin. Phys. B27 047103 [8] Koyanagi J, Nishida M and Kita K 2020 Jpn. J. Appl. Phys.59 SMMA06 [9] Kil T H and Kita K 2020 ECS Trans.98 47 [10] Hao J L, Bai Y, Liu X Y, Li C Z and Wang S K 2020 Chin. Phys. B29 097301 [11] Chakraborty S, Lai P, Chan C and Cheng Y 2000 Appl. Phys. Lett.76 3744 [12] Li X Y, Lee S S, Li M J, Ermakov A, Medina-Ramos J, Fister T T, Amarasinghe V, Gustafsson T, Garfunkel E, Fenter P and Feldman L C 2018 Appl. Phys. Lett.113 131601 [13] Yang C, Yin Z P, Zhang F L, Su Y, Qin F W and Wang D J 2020 Appl. Surf. Sci.513 145837 [14] Yang C, Zhang F L, Yin Z P, Su Y, Qin F W and Wang D J 2019 Appl. Surf. Sci.488 293 [15] Hao J L 2020 Investigation of SiC-MOS gate oxidation and interface passivation technology, Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [16] Lipkin L A and Palmour J W 1996 J. Electron. Mater.25 909 [17] Das M K, Cooper J A and Melloch M R 1998 J. Electron. Mater.27 353 [18] Jernigan G G, Stahlbush R E and Saks N S 2000 Appl. Phys. Lett.77 1437 [19] Król K, Kalisz M, Sochacki M and Szmidt J 2012 Mater. Sci. Eng. B177 1314 [20] Kikuchi R H and Kita K 2014 Appl. Phys. Lett.105 032106 [21] Kobayashi T, Tachiki K, Ito K and Kimoto T 2019 Appl. Phys. Express12 031001 [22] Zhu Q Z and Wang D J 2014 Journal of Semiconductors35 024002 [23] Yang C, Wei S S and Wang D J 2021 J. Phys. D: Appl. Phys.54 123002 [24] Kim Y H, Onishi K, Chang S K, Cho H J, Nieh R, Gopalan S, Choi R, Han J, Krishnan S and Lee J C 2002 Electron Dev. Lett.23 594 [25] Sune J, Wu E Y, Jimenez D and Lai W L 2003 Microelectron. Reliab.43 1185 [26] Fiorenza P, Schiliró E, Giannazzo F, Bongiorno C, Zielinski M, La Via F and Roccaforte F 2020 Appl. Surf. Sci.526 146656 [27] Wu E Y and Vollertsen R P 2003 IEEE Trans. Electron Dev.49 2131 [28] Nigam T, Degraeve R, Groeseneken G, Heyns M M and Maes H E 1998 Proc. 36th IEEE Int. Rel. Phys. Symp.96 62 [29] Luo J and Tao L 2014 Math. Probl. Eng.2014 1 [30] Hatakeyama T, Kono H, Suzuki T, Senzaki J, Fukuda K, Shinohe T and Arai K 2009 Mater. Sci. Forum615-617 553 [31] Gurfinkel M, Horst J C, Suehle J S, Bernstein J B and Beaupre R A 2008 IEEE Trans. Dev. Mat. Rel.8 635 [32] Afanasev V V, Bassler M, Pensl G and Schulz M 1997 Phys. Stat. Sol. A162 321 [33] Yin Z, Yang C, Zhang F, Su Y and Wang D 2020 Appl. Surf. Sci.531 147312 [34] Kita K, Kikuchi R H, Hirai H and Fujino Y 2014 ECS Trans.64 23 [35] Song Y, Dhar S, Feldman L C, Chung G and Williams J R 2004 J. Appl. Phys.95 4953 [36] Goto D, Hijikata Y, Yagi S and Yaguchi H 2015 J. Appl. Phys.117 095306 [37] You N N, Liu X Y, Hao J L, Bai Y and Wang S K 2020 Vacuum182 109762 [38] Cherkaoui K, Blake A, Gomeniuk Y Y, Lin J, Sheehan B, White M, Hurley P K and Ward P J 2018 AIP Adv.8 085323 [39] Goto D and Hijikata Y 2016 J. Phys. D: Appl. Phys.49 225103
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.