INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure |
Qi-Liang Wang(王启亮)1,2, Shi-Yang Fu(付诗洋)1, Si-Han He(何思翰)1, Hai-Bo Zhang(张海波)3, Shao-Heng Cheng(成绍恒)1,2,†, Liu-An Li(李柳暗)1,2,‡, and Hong-Dong Li(李红东)1,2 |
1 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China; 2 Shenzhen Research Institute, Jilin University, Shenzhen 518057, China; 3 Guangdong Juxin New Material Technology Co., Ltd, Zhuhai 519000, China |
|
|
Abstract An n-GaOx thin film is deposited on a single-crystal boron-doped diamond by RF magnetron sputtering to form the pn heterojunction. The n-GaOx thin film presents a small surface roughness and a large optical band gap of 4.85 eV. In addition, the band alignment is measured using x-ray photoelectron spectroscopy to evaluate the heterojunction properties. The GaOx/diamond heterojunction shows a type-II staggered band configuration, where the valence and conduction band offsets are 1.28 eV and 1.93 eV, respectively. These results confirm the feasibility of the use of n-GaOx as a termination structure for diamond power devices.
|
Received: 14 September 2021
Revised: 13 December 2021
Accepted manuscript online: 24 December 2021
|
PACS:
|
81.05.ug
|
(Diamond)
|
|
85.30.Kk
|
(Junction diodes)
|
|
84.30.Jc
|
(Power electronics; power supply circuits)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101690001). |
Corresponding Authors:
Shao-Heng Cheng, Liu-An Li
E-mail: chengshaoheng@jlu.edu.cn;liliuan@jlu.edu.cn
|
Cite this article:
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东) Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure 2022 Chin. Phys. B 31 088104
|
[1] Lu Y, Lin C and Shan C 2018 Adv. Opt. Mater. 6 1800359 [2] Ekimov E, Sidorov V, Bauer E, et al. 2004 Nature 428 542 [3] Gloor S, Lüthy W, Weber H, et al. 1999 Appl. Surf. Sci. 138-139 135 [4] Umezawa H 2018 Mater. Sci. Semicond. Process. 78 147 [5] Matsumoto T, Mukose T, Makino T, et al. 2017 Diam. Relat. Mater. 75 152 [6] Yu X, Zhou J, Wang Y, et al. 2019 Diam. Relat. Mater. 92 146 [7] Driche K, Rugen S, Kaminski N, et al. 2018 Diam. Relat. Mater. 82 160 [8] Wang Y, Pu T, Li X, et al. 2021 Mater. Sci. Semicond. Process. 125 105628 [9] Kubovic M, El-Hajj H, Butler J, et al. 2007 Diam. Relat. Mater. 16 1033 [10] Li L, Li H, Lv X, et al. 2010 Appl. Surf. Sci. 256 1764 [11] Matsumoto T, Mukose T, Makino T, et al. 2017 Diam. Relat. Mater. 75 152 [12] Das D, Kandasami A and Rao M 2021 Appl. Phys. Lett. 118 102102 [13] Liu Z, Li P, Zhi Y, et al. 2019 Chin. Phys. B 28 017105 [14] Li S, Jiao S, Wang D, et al. 2018 J. Alloys Compd. 753 186 [15] Kim H, Tarelkin S, Polyakov A, et al. 2020 ECS J. Solid State Sci. Technol. 9 045004 [16] Zhang T, Li X, Pu T, et al. 2020 Mater. Sci. Semicond. Process. 105 104740 [17] Liu Z, Yu J, Li P, et al. 2019 J. Phys. D:Appl. Phys. 52 295104 [18] Sun X, Zhu C, Zhu X, et al. 2021 Adv. Electron. Mater. 7 2001174 [19] Lo S, Mirkovic T, Chuang C, et al. 2011 Adv. Mater. 23 180 [20] Kraut E, Grant R, Waldrop J, et al. 1986 Phys. Rev. Lett. 44 1620 [21] Liu J, Cheng S, Liao M, et al. 2013 Diam. Relat. Mater. 38 24 [22] Gonon P, Gheeraert E, Deneuville A, et al. 1995 J. Appl. Phys. 78 7059 [23] Bernard M, Deneuville A, Muret P, et al. 2004 Diam. Relat. Mater. 13 282 [24] Miyazaki S 2001 J. Vac. Sci. Technol. B 19 2212 [25] Zhang D, Li S, Zuo X, et al. 2020 Diam. Relat. Mater. 108 107923 [26] Navas J, Araujo D, Pinero J, et al. 2018 Appl. Surf. Sci. 433 408 [27] Kono S, Kageura T, Hayashi Y, et al. 2019 Diamond & Related Materials 93 105 [28] Li L, Wang W, He L, et al. 2017 J. Alloys Compd. 728 400 [29] Gao Y, Gao N, Li H, et al. 2018 Nanoscale 10 15788 [30] Macdonald D, Crawford K, Tallaire A, et al. 2018 IEEE Electron Device Letters 39 1354 [31] Ren Z, Lv D, Xu J, et al. 2020 Appl. Phys. Lett. 116 013503 [32] Liu J, Liao M, Imura M, et al. 2012 Appl. Phys. Lett. 101 252108 [33] Shammas J, Yang Y, Wang X, et al. 2017 Appl. Phys. Lett. 111 171604 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|