Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
SPECIAL TOPIC—Two-dimensional magnetic materials and devices |
Prev
Next
|
|
|
Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure |
Jimin Shang(商继敏)1, Shuai Qiao(乔帅)1, Jingzhi Fang(房景治)2, Hongyu Wen(文宏玉)2,†, and Zhongming Wei(魏钟鸣)2 |
1 School of Physics and Electronics Engineering, Zhengzhou University of Light Industry&Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences&Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Exploring two-dimensional (2D) magnetic heterostructures is essential for future spintronic and optoelectronic devices. Herein, using first-principle calculations, stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS2/C3N van der Waals (vdW) heterostructure. Unlike the semiconductive properties with indirect band gaps in both the VS2 and C3N monolayers, our results indicate that a direct band gap with type-Ⅱ band alignment and p-doping characters are realized in the spin-up channel of the VS2/C3N heterostructure, and a typical type-Ⅲ band alignment with a broken-gap in the spin-down channel. Furthermore, the band alignments in the two spin channels can be effectively tuned by applying tensile strain. An interchangement between the type-Ⅱ and type-Ⅲ band alignments occurs in the two spin channels, as the tensile strain increases to 4%. The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.
|
Received: 25 April 2021
Revised: 17 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
61.82.Fk
|
(Semiconductors)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207500), Natural Science Foundation of Henan Province, China (Grant No. 202300410507), and Key Research & Development and Promotion Projects in Henan Province, China (Grant No. 212102210134). |
Corresponding Authors:
Hongyu Wen
E-mail: wenhongyu@semi.ac.cn
|
Cite this article:
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣) Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure 2021 Chin. Phys. B 30 097507
|
[1] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722 [2] Hong X P, Kim J and Shi S F 2014 Nat. Nanotechnol. 9 682 [3] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 [4] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125 [5] Shang J M, Pan L F, Wang X T, Li J B, Deng H X and Wei Z M 2018 J. Mater. Chem. C 6 7201 [6] Liang S J, Cheng B, Cui X and Miao F 2020 Adv. Mater. 32 1903800 [7] Shang J M, Zhang S, Wang Y Q, Wen H Y and Wei Z M 2019 Chin. Opt. Lett. 17 020010 [8] Tan X Y, Liu L L and Ren D H 2020 Chin. Phys. B 29 076102 [9] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, UgedaM M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437 [10] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nature Commun. 8 1958 [11] Ge J, Luo T, Lin Z, Shi J, Liu Y, Wang P, Zhang Y, Duan W and Wang J 2021 Adv. Mater. 33 2005465 [12] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442 [13] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [15] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano 6 1695 [16] Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429 [17] Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z and Li J 2017 Phys. Rev. B 95 245408 [18] Du J, Xia C, Xiong W, Wang T, Jia Y and Li J 2017 Nanoscale 9 17585 [19] Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee S, Kang Z and Jiang M 2017 Adv. Mater. 29 1605625 [20] Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H and Baek J B 2016 Proc. Natl. Acad. Sci. USA 113 7414 [21] Mortazavi B 2017 Carbon 118 25 [22] Bafekry A, Farjami Shayesteh S and Peeters F M 2019 J. Phys. Chem. C 123 12485 [23] Xu J T, Mahmood J, Dou Y H, Dou S X, Li F, Dai L M and Baek J B 2017 Adv. Mater. 29 1702007 [24] Makaremi M, Mortazavi B and Singh C V 2017 J. Phys. Chem. C. 121 18575 [25] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944 [26] Zhou X, Feng W, Guan S, Fu B, Su W and Yao Y 2017 J. Mater. Res. 32 2993 [27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [31] Ma X, Yin L, Zou J, Mi W and Wang X 2019 J. Phys. Chem. C 123 17440 [32] Luo N, Si C and Duan W 2017 Phys. Rev. B 95 205432 [33] Fuh H R, Chang C R, Wang Y K, Evans R F L, Chantrell R W and Jeng H T 2016 Sci. Rep. 6 32625 [34] Grimme S 2006 J. Comput. Chem. 27 1787 [35] Kerber T, Sierka M and Sauer J 2008 J. Comput. Chem. 29 2088 [36] Slassi A and Cornil J 2018 2D Mater. 6 015025 [37] Tagani M B 2018 Comput. Mater. Sci. 153 126 [38] Yang Y X and Wang Z G 2019 RSC Adv. 9 19837 [39] Xie L, Yang L, Ge W, Wang X and Jiang J 2019 Chem. Phys. 520 40 [40] Wang X, Li Q, Wang H, Gao Y, Hou J and Shao J 2018 Phys. B 537 314 [41] Gao X, Shen Y, Ma Y, Wu S and Zhou Z 2019 Appl. Surf. Sci. 479 1098 [42] Yan R, Fathipour S, Han Y, Song B, Xiao S, Li M, Ma N, Protasenko V, Muller D A, Jena D and Xing H G 2015 Nano Lett. 15 5791 [43] Zhang H, Li Y, Yang M, Zhang B, Yang G, Wang S and Wang K 2015 Chin. Phys. B 24 077501 [44] Kan M, Wang B, Lee Y H and Sun Q 2015 Nano Research 8 1348 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|