1 School of Physics and Electronics Engineering, Zhengzhou University of Light Industry&Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, China; 2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences&Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
Abstract Exploring two-dimensional (2D) magnetic heterostructures is essential for future spintronic and optoelectronic devices. Herein, using first-principle calculations, stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS2/C3N van der Waals (vdW) heterostructure. Unlike the semiconductive properties with indirect band gaps in both the VS2 and C3N monolayers, our results indicate that a direct band gap with type-Ⅱ band alignment and p-doping characters are realized in the spin-up channel of the VS2/C3N heterostructure, and a typical type-Ⅲ band alignment with a broken-gap in the spin-down channel. Furthermore, the band alignments in the two spin channels can be effectively tuned by applying tensile strain. An interchangement between the type-Ⅱ and type-Ⅲ band alignments occurs in the two spin channels, as the tensile strain increases to 4%. The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207500), Natural Science Foundation of Henan Province, China (Grant No. 202300410507), and Key Research & Development and Promotion Projects in Henan Province, China (Grant No. 212102210134).
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣) Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure 2021 Chin. Phys. B 30 097507
[1] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol.5 722 [2] Hong X P, Kim J and Shi S F 2014 Nat. Nanotechnol.9 682 [3] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol.13 289 [4] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett.18 3125 [5] Shang J M, Pan L F, Wang X T, Li J B, Deng H X and Wei Z M 2018 J. Mater. Chem. C6 7201 [6] Liang S J, Cheng B, Cui X and Miao F 2020 Adv. Mater.32 1903800 [7] Shang J M, Zhang S, Wang Y Q, Wen H Y and Wei Z M 2019 Chin. Opt. Lett.17 020010 [8] Tan X Y, Liu L L and Ren D H 2020 Chin. Phys. B29 076102 [9] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, UgedaM M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science352 437 [10] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nature Commun.8 1958 [11] Ge J, Luo T, Lin Z, Shi J, Liu Y, Wang P, Zhang Y, Duan W and Wang J 2021 Adv. Mater.33 2005465 [12] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B81 085442 [13] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature546 265 [14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature546 270 [15] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano6 1695 [16] Zhuang H L and Hennig R G 2016 Phys. Rev. B93 054429 [17] Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z and Li J 2017 Phys. Rev. B95 245408 [18] Du J, Xia C, Xiong W, Wang T, Jia Y and Li J 2017 Nanoscale9 17585 [19] Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee S, Kang Z and Jiang M 2017 Adv. Mater.29 1605625 [20] Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H and Baek J B 2016 Proc. Natl. Acad. Sci. USA113 7414 [21] Mortazavi B 2017 Carbon118 25 [22] Bafekry A, Farjami Shayesteh S and Peeters F M 2019 J. Phys. Chem. C123 12485 [23] Xu J T, Mahmood J, Dou Y H, Dou S X, Li F, Dai L M and Baek J B 2017 Adv. Mater.29 1702007 [24] Makaremi M, Mortazavi B and Singh C V 2017 J. Phys. Chem. C.121 18575 [25] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett.13 5944 [26] Zhou X, Feng W, Guan S, Fu B, Su W and Yao Y 2017 J. Mater. Res.32 2993 [27] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [29] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B57 1505 [31] Ma X, Yin L, Zou J, Mi W and Wang X 2019 J. Phys. Chem. C123 17440 [32] Luo N, Si C and Duan W 2017 Phys. Rev. B95 205432 [33] Fuh H R, Chang C R, Wang Y K, Evans R F L, Chantrell R W and Jeng H T 2016 Sci. Rep.6 32625 [34] Grimme S 2006 J. Comput. Chem.27 1787 [35] Kerber T, Sierka M and Sauer J 2008 J. Comput. Chem.29 2088 [36] Slassi A and Cornil J 2018 2D Mater. 6 015025 [37] Tagani M B 2018 Comput. Mater. Sci. 153 126 [38] Yang Y X and Wang Z G 2019 RSC Adv.9 19837 [39] Xie L, Yang L, Ge W, Wang X and Jiang J 2019 Chem. Phys.520 40 [40] Wang X, Li Q, Wang H, Gao Y, Hou J and Shao J 2018 Phys. B537 314 [41] Gao X, Shen Y, Ma Y, Wu S and Zhou Z 2019 Appl. Surf. Sci.479 1098 [42] Yan R, Fathipour S, Han Y, Song B, Xiao S, Li M, Ma N, Protasenko V, Muller D A, Jena D and Xing H G 2015 Nano Lett.15 5791 [43] Zhang H, Li Y, Yang M, Zhang B, Yang G, Wang S and Wang K 2015 Chin. Phys. B24 077501 [44] Kan M, Wang B, Lee Y H and Sun Q 2015 Nano Research8 1348
[1]
Strain compensated type II superlattices grown by molecular beam epitaxy Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.