Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097507    DOI: 10.1088/1674-1056/ac0cd1
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
SPECIAL TOPIC—Two-dimensional magnetic materials and devices Prev   Next  

Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure

Jimin Shang(商继敏)1, Shuai Qiao(乔帅)1, Jingzhi Fang(房景治)2, Hongyu Wen(文宏玉)2,†, and Zhongming Wei(魏钟鸣)2
1 School of Physics and Electronics Engineering, Zhengzhou University of Light Industry&Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
2 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences&Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100083, China
Abstract  Exploring two-dimensional (2D) magnetic heterostructures is essential for future spintronic and optoelectronic devices. Herein, using first-principle calculations, stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS2/C3N van der Waals (vdW) heterostructure. Unlike the semiconductive properties with indirect band gaps in both the VS2 and C3N monolayers, our results indicate that a direct band gap with type-Ⅱ band alignment and p-doping characters are realized in the spin-up channel of the VS2/C3N heterostructure, and a typical type-Ⅲ band alignment with a broken-gap in the spin-down channel. Furthermore, the band alignments in the two spin channels can be effectively tuned by applying tensile strain. An interchangement between the type-Ⅱ and type-Ⅲ band alignments occurs in the two spin channels, as the tensile strain increases to 4%. The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.
Keywords:  two-dimensional ferromagnetic material      van der Waals heterostructure      band alignment      strain  
Received:  25 April 2021      Revised:  17 June 2021      Accepted manuscript online:  21 June 2021
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207500), Natural Science Foundation of Henan Province, China (Grant No. 202300410507), and Key Research & Development and Promotion Projects in Henan Province, China (Grant No. 212102210134).
Corresponding Authors:  Hongyu Wen     E-mail:  wenhongyu@semi.ac.cn

Cite this article: 

Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣) Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure 2021 Chin. Phys. B 30 097507

[1] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[2] Hong X P, Kim J and Shi S F 2014 Nat. Nanotechnol. 9 682
[3] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[4] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[5] Shang J M, Pan L F, Wang X T, Li J B, Deng H X and Wei Z M 2018 J. Mater. Chem. C 6 7201
[6] Liang S J, Cheng B, Cui X and Miao F 2020 Adv. Mater. 32 1903800
[7] Shang J M, Zhang S, Wang Y Q, Wen H Y and Wei Z M 2019 Chin. Opt. Lett. 17 020010
[8] Tan X Y, Liu L L and Ren D H 2020 Chin. Phys. B 29 076102
[9] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, UgedaM M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
[10] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J and Wei Z 2017 Nature Commun. 8 1958
[11] Ge J, Luo T, Lin Z, Shi J, Liu Y, Wang P, Zhang Y, Duan W and Wang J 2021 Adv. Mater. 33 2005465
[12] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[13] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[14] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[15] Ma Y, Dai Y, Guo M, Niu C, Zhu Y and Huang B 2012 ACS Nano 6 1695
[16] Zhuang H L and Hennig R G 2016 Phys. Rev. B 93 054429
[17] Xiong W, Xia C, Du J, Wang T, Zhao X, Peng Y, Wei Z and Li J 2017 Phys. Rev. B 95 245408
[18] Du J, Xia C, Xiong W, Wang T, Jia Y and Li J 2017 Nanoscale 9 17585
[19] Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee S, Kang Z and Jiang M 2017 Adv. Mater. 29 1605625
[20] Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H and Baek J B 2016 Proc. Natl. Acad. Sci. USA 113 7414
[21] Mortazavi B 2017 Carbon 118 25
[22] Bafekry A, Farjami Shayesteh S and Peeters F M 2019 J. Phys. Chem. C 123 12485
[23] Xu J T, Mahmood J, Dou Y H, Dou S X, Li F, Dai L M and Baek J B 2017 Adv. Mater. 29 1702007
[24] Makaremi M, Mortazavi B and Singh C V 2017 J. Phys. Chem. C. 121 18575
[25] Mouri S, Miyauchi Y and Matsuda K 2013 Nano Lett. 13 5944
[26] Zhou X, Feng W, Guan S, Fu B, Su W and Yao Y 2017 J. Mater. Res. 32 2993
[27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[31] Ma X, Yin L, Zou J, Mi W and Wang X 2019 J. Phys. Chem. C 123 17440
[32] Luo N, Si C and Duan W 2017 Phys. Rev. B 95 205432
[33] Fuh H R, Chang C R, Wang Y K, Evans R F L, Chantrell R W and Jeng H T 2016 Sci. Rep. 6 32625
[34] Grimme S 2006 J. Comput. Chem. 27 1787
[35] Kerber T, Sierka M and Sauer J 2008 J. Comput. Chem. 29 2088
[36] Slassi A and Cornil J 2018 2D Mater. 6 015025
[37] Tagani M B 2018 Comput. Mater. Sci. 153 126
[38] Yang Y X and Wang Z G 2019 RSC Adv. 9 19837
[39] Xie L, Yang L, Ge W, Wang X and Jiang J 2019 Chem. Phys. 520 40
[40] Wang X, Li Q, Wang H, Gao Y, Hou J and Shao J 2018 Phys. B 537 314
[41] Gao X, Shen Y, Ma Y, Wu S and Zhou Z 2019 Appl. Surf. Sci. 479 1098
[42] Yan R, Fathipour S, Han Y, Song B, Xiao S, Li M, Ma N, Protasenko V, Muller D A, Jena D and Xing H G 2015 Nano Lett. 15 5791
[43] Zhang H, Li Y, Yang M, Zhang B, Yang G, Wang S and Wang K 2015 Chin. Phys. B 24 077501
[44] Kan M, Wang B, Lee Y H and Sun Q 2015 Nano Research 8 1348
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[10] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[14] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[15] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
No Suggested Reading articles found!