Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047102    DOI: 10.1088/1674-1056/ac3a62
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field

Da-Hua Ren(任达华)1,2,†, Qiang Li(李强)3, Kai Qian(钱楷)3, and Xing-Yi Tan(谭兴毅)4
1 School of Information Engineering, Hubei Minzu University, Enshi 44500, China;
2 Science of Physics and Technology, Wuhan University, Wuhan 430072, China;
3 School of Advanced Materials and Mechatronic Engineering, Hubei Minzu University, Enshi 44500, China;
4 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China
Abstract  Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties. In this work, we study the structural, electronic, and optical properties of vertically stacked GaS-SnS2 heterostructure under the frame of density functional theory. We find that the stacked GaS-SnS2 heterostructure is a semiconductor with a suitable indirect band gap of 1.82 eV, exhibiting a type-II band alignment for easily separating the photo-generated carriers. The electronic properties of GaS-SnS2 heterostructure can be effectively tuned by an external strain and electric field. The optical absorption of GaS-SnS2 heterostructure is more enhanced than those of the GaS monolayer and SnS2 monolayer in the visible light region. Our results suggest that the GaS-SnS2 heterostructure is a promising candidate for the photocatalyst and photoelectronic devices in the visible light region.
Keywords:  GaS-SnS2 heterostructure      type-II band alignment      optical properties      density functional theory  
Received:  09 July 2021      Revised:  30 September 2021      Accepted manuscript online:  17 November 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1186040026), the Incubation Project for High-Level Scientific Research Achievements of Hubei Minzu University, China (Grant No. 4205009), and the Fund of the Educational Commission of Hubei Province, China (Grant No. T201914).
Corresponding Authors:  Da-Hua Ren     E-mail:  rdh_perfect@163.com

Cite this article: 

Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅) Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field 2022 Chin. Phys. B 31 047102

[1] Geim A and Grigorieva I 2013 Nature 499 419
[2] Massicotte M, Schmidt P, Vialla F, Schödler K G, Reserbat P A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2015 Nat. Nanotechnol. 11 42
[3] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676
[4] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[5] Wang H, Yuan H, Sae H S, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664
[6] Lu N, Guo H, Li L, Dai J, Wang L, Mei W N, Wu X and Zeng X C 2014 Nanoscale 6 2879
[7] Jiao Z Y, Wang Y R, Guo Y L and Ma S H 2021 Chin. Phys. B 30 077304
[8] Peng C S, Zhou Y D, Zhang S S and Zhao Z Y 2021 Chin. Phys. B 30 017101
[9] 9. Sun Y Q, Zhang J C, Cheng F M, Ning C, Zhuo N, Zhai S Q, Liu F Q, Liu J Q, Liu S M and Wang Z G 2021 Chin. Phys. B 30 034211
[10] Wong J, Jariwala D, Tagliabue G, Tat K, Davoyan A R, Sherrott M C and Atwater H A 2017 ACS Nano 11 7230
[11] Ren D H, Tan X Y, Zhang T and Zhang Y 2019 Chin. Phys. B 28 086104
[12] Peng B, Yu G, Liu X, Liu B, Liang X, Bi L, Deng L, Sum T C and Loh K P 2016 2D Mater. 3 025020
[13] Genut M, Margulis L, Hodes G and Tenne R 1992 Thin Solid Films 217 97
[14] Late D J, Liu B, Matte H S S R, Rao C N R and Dravid V P 2012 Adv. Funct. Mater. 22 1894
[15] Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B and Xiao K 2013 Nano Lett. 13 1649
[16] Wei W, Dai Y, Niu C W, Li X, Ma Y D and Huang B B 2015 J. Mater. Chem. C 3 11548
[17] Pham K D, Phuc H V, Hieu N N, Hoi B D and Nguyen C V 2018 AIP Adv. 8 075207
[18] Rahman A U, Morbec J M, Rahman G and Kratzer P 2018 Phys. Rev. Mater. 2 094002
[19] Huang P C, Shen Y M, Brahma S, Shaikh M O, Huang J L and Wang S C 2017 Catalysts 7 252
[20] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q and Xie Y 2012 Angew. Chem. Int. Ed. 51 8727
[21] Lin J, Liu Y, Liu Y, Huang C, Liu W, Mi X, Fan D, Fan F, Lu H and Chen X 2019 Chem. Sus. Chem. 12 961
[22] Shown I, Samireddi S, Chang Y C, Putikam R, Chang P H, Sabbah A, Fu F Y, Chen W F, Wu C I, Yu T Y, Chung P W, Lin M C, Chen L C and Chen K H 2018 Nat. Commun. 9 169
[23] Ding Y and Wang Y 2013 Appl. Phys. Lett. 103 043114
[24] Sun L Q, Zhao Z C, Li S, Su Y P, Huang L, Shao N N, Liu F, Bu Y B, Zhang H J and Zhang Z T 2019 ACS Appl. Nano Mater. 2 2144
[25] Di T, Zhu B, Cheng B, Yu J and Xu J 2017 J. Catal. 352 532
[26] Zhang Y C, Yao L, Zhang G, Dionysiou D D, Li J and Du X 2014 Appl. Catal. B 144 730
[27] An X, Yu J C and Tang J 2014 J. Mater. Chem. A 2 1000
[28] Wang J N, Huang Y H, Ma F, Zhang J M, Wei X M and Zhu G Q 2020 J. Alloys Compd. 849 156627
[29] Chou X Y, Ye J, Cui M M, He Y Z and Li Y D 2020 Mater. Chem. Phys. 240 122241
[30] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[31] Tong B Y and Sham L J 1966 Phys. Rev. 144 1
[32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Burke K, Perdew J P and Ernzerhof M 1997 Int. J. Quantum Chem. 61 287
[35] Heyd J and Scuseria G E 2003 J. Chem. Phys. 118 8207
[36] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[37] Blöchl P E 1994 Phys. Rev. B 50 17953
[38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[39] Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[40] Adler S L 1962 Phys. Rev. 126 413
[41] Komsa H and Krasheninnikov A V 2013 Phys. Rev. B 88 085318
[42] Chen X, Tian F, Persson C, Duan W and Chen N X 2013 Sci. Rep. 3 3046
[43] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[44] Bader R F W 1990 Atoms in Molecules (A Quantum Theory) (Oxford:Oxford University Press)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!