CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field |
Da-Hua Ren(任达华)1,2,†, Qiang Li(李强)3, Kai Qian(钱楷)3, and Xing-Yi Tan(谭兴毅)4 |
1 School of Information Engineering, Hubei Minzu University, Enshi 44500, China; 2 Science of Physics and Technology, Wuhan University, Wuhan 430072, China; 3 School of Advanced Materials and Mechatronic Engineering, Hubei Minzu University, Enshi 44500, China; 4 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China |
|
|
Abstract Vertically stacked heterostructures have received extensive attention because of their tunable electronic structures and outstanding optical properties. In this work, we study the structural, electronic, and optical properties of vertically stacked GaS-SnS2 heterostructure under the frame of density functional theory. We find that the stacked GaS-SnS2 heterostructure is a semiconductor with a suitable indirect band gap of 1.82 eV, exhibiting a type-II band alignment for easily separating the photo-generated carriers. The electronic properties of GaS-SnS2 heterostructure can be effectively tuned by an external strain and electric field. The optical absorption of GaS-SnS2 heterostructure is more enhanced than those of the GaS monolayer and SnS2 monolayer in the visible light region. Our results suggest that the GaS-SnS2 heterostructure is a promising candidate for the photocatalyst and photoelectronic devices in the visible light region.
|
Received: 09 July 2021
Revised: 30 September 2021
Accepted manuscript online: 17 November 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1186040026), the Incubation Project for High-Level Scientific Research Achievements of Hubei Minzu University, China (Grant No. 4205009), and the Fund of the Educational Commission of Hubei Province, China (Grant No. T201914). |
Corresponding Authors:
Da-Hua Ren
E-mail: rdh_perfect@163.com
|
Cite this article:
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅) Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field 2022 Chin. Phys. B 31 047102
|
[1] Geim A and Grigorieva I 2013 Nature 499 419 [2] Massicotte M, Schmidt P, Vialla F, Schödler K G, Reserbat P A, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2015 Nat. Nanotechnol. 11 42 [3] Lee C H, Lee G H, van der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J and Kim P 2014 Nat. Nanotechnol. 9 676 [4] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947 [5] Wang H, Yuan H, Sae H S, Li Y and Cui Y 2015 Chem. Soc. Rev. 44 2664 [6] Lu N, Guo H, Li L, Dai J, Wang L, Mei W N, Wu X and Zeng X C 2014 Nanoscale 6 2879 [7] Jiao Z Y, Wang Y R, Guo Y L and Ma S H 2021 Chin. Phys. B 30 077304 [8] Peng C S, Zhou Y D, Zhang S S and Zhao Z Y 2021 Chin. Phys. B 30 017101 [9] 9. Sun Y Q, Zhang J C, Cheng F M, Ning C, Zhuo N, Zhai S Q, Liu F Q, Liu J Q, Liu S M and Wang Z G 2021 Chin. Phys. B 30 034211 [10] Wong J, Jariwala D, Tagliabue G, Tat K, Davoyan A R, Sherrott M C and Atwater H A 2017 ACS Nano 11 7230 [11] Ren D H, Tan X Y, Zhang T and Zhang Y 2019 Chin. Phys. B 28 086104 [12] Peng B, Yu G, Liu X, Liu B, Liang X, Bi L, Deng L, Sum T C and Loh K P 2016 2D Mater. 3 025020 [13] Genut M, Margulis L, Hodes G and Tenne R 1992 Thin Solid Films 217 97 [14] Late D J, Liu B, Matte H S S R, Rao C N R and Dravid V P 2012 Adv. Funct. Mater. 22 1894 [15] Hu P A, Wang L F, Yoon M, Zhang J, Feng W, Wang X N, Wen Z Z, Idrobo J C, Miyamoto Y, Geohegan D B and Xiao K 2013 Nano Lett. 13 1649 [16] Wei W, Dai Y, Niu C W, Li X, Ma Y D and Huang B B 2015 J. Mater. Chem. C 3 11548 [17] Pham K D, Phuc H V, Hieu N N, Hoi B D and Nguyen C V 2018 AIP Adv. 8 075207 [18] Rahman A U, Morbec J M, Rahman G and Kratzer P 2018 Phys. Rev. Mater. 2 094002 [19] Huang P C, Shen Y M, Brahma S, Shaikh M O, Huang J L and Wang S C 2017 Catalysts 7 252 [20] Sun Y F, Cheng H, Gao S, Sun Z H, Liu Q H, Liu Q, Lei F C, Yao T, He J F, Wei S Q and Xie Y 2012 Angew. Chem. Int. Ed. 51 8727 [21] Lin J, Liu Y, Liu Y, Huang C, Liu W, Mi X, Fan D, Fan F, Lu H and Chen X 2019 Chem. Sus. Chem. 12 961 [22] Shown I, Samireddi S, Chang Y C, Putikam R, Chang P H, Sabbah A, Fu F Y, Chen W F, Wu C I, Yu T Y, Chung P W, Lin M C, Chen L C and Chen K H 2018 Nat. Commun. 9 169 [23] Ding Y and Wang Y 2013 Appl. Phys. Lett. 103 043114 [24] Sun L Q, Zhao Z C, Li S, Su Y P, Huang L, Shao N N, Liu F, Bu Y B, Zhang H J and Zhang Z T 2019 ACS Appl. Nano Mater. 2 2144 [25] Di T, Zhu B, Cheng B, Yu J and Xu J 2017 J. Catal. 352 532 [26] Zhang Y C, Yao L, Zhang G, Dionysiou D D, Li J and Du X 2014 Appl. Catal. B 144 730 [27] An X, Yu J C and Tang J 2014 J. Mater. Chem. A 2 1000 [28] Wang J N, Huang Y H, Ma F, Zhang J M, Wei X M and Zhu G Q 2020 J. Alloys Compd. 849 156627 [29] Chou X Y, Ye J, Cui M M, He Y Z and Li Y D 2020 Mater. Chem. Phys. 240 122241 [30] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [31] Tong B Y and Sham L J 1966 Phys. Rev. 144 1 [32] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [34] Burke K, Perdew J P and Ernzerhof M 1997 Int. J. Quantum Chem. 61 287 [35] Heyd J and Scuseria G E 2003 J. Chem. Phys. 118 8207 [36] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [37] Blöchl P E 1994 Phys. Rev. B 50 17953 [38] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [39] Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112 [40] Adler S L 1962 Phys. Rev. 126 413 [41] Komsa H and Krasheninnikov A V 2013 Phys. Rev. B 88 085318 [42] Chen X, Tian F, Persson C, Duan W and Chen N X 2013 Sci. Rep. 3 3046 [43] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [44] Bader R F W 1990 Atoms in Molecules (A Quantum Theory) (Oxford:Oxford University Press) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|