Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 024205    DOI: 10.1088/1674-1056/ac29b3

A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction

Wei-Ming Sun(孙伟铭)1, Bing-Yang Sun(孙兵阳)1, Shan Li(李山)1, Guo-Liang Ma(麻国梁)1, Ang Gao(高昂)1, Wei-Yu Jiang(江为宇)1, Mao-Lin Zhang(张茂林)2,3, Pei-Gang Li(李培刚)1, Zeng Liu(刘增)2,3,†, and Wei-Hua Tang(唐为华)1,2,3,‡
1 Laboratory of Information Functional Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The symmetric Ti/Au bi-layer point electrodes have been successfully patterned on the β-Ga2O3 films which are prepared by metal-organic chemical vapor deposition (MOCVD) and the γ-CuI films which are prepared by spin-coating. The fabricated heterojunction has a large open circuit voltage (Voc) of 0.69 V, desired for achieving self-powered operation of a photodetector. Irradiated by 254-nm ultraviolet (UV) light, when the bias voltage is -5 V, the dark current (Idark) of the device is 0.47 pA, the photocurrent (Iphoto) is -50.93 nA, and the photo-to-dark current ratio (Iphoto/Idark) reaches about 1.08×105. The device has a stable and fast response speed in different wavelengths, the rise time (τr) and decay time (τd) are 0.762 s and 1.741 s under 254-nm UV light illumination, respectively. While the τr and τd are 10.709 s and 7.241 s under 365-nm UV light illumination, respectively. The time-dependent (I-t) response (photocurrent in the order of 10-10 A) can be clearly distinguished at a small light intensity of 1 μW·cm-2. The internal physical mechanism affecting the device performances is discussed by the band diagram and charge carrier transfer theory.
Keywords:  β-Ga2O3      γ-CuI      heterojunction      broadband photodetector      self-power  
Received:  03 August 2021      Revised:  14 September 2021      Accepted manuscript online:  24 September 2021
PACS:  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
  42.70.-a (Optical materials)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Natural Science Foundation of China (Grunt No. 61774019).
Corresponding Authors:  Zeng Liu, Wei-Hua Tang     E-mail:;

Cite this article: 

Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华) A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction 2022 Chin. Phys. B 31 024205

[1] Sang L, Liao M and Sumiya M 2013 Sensors 13 10482
[2] Lin C H and Liu C W 2010 Sensors 10 8797
[3] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493
[4] Xu B B, Shen H L, Xu Y J, Ge J W, Wang S, Zhao Q C and Lai B K 2021 J. Alloys Compd. 874 9
[5] Wang L, Jie J S, Shao Z B, Zhang Q, Zhang X H, Wang Y M, Sun Z and Lee S T 2015 Adv. Funct. Mater. 25 2910
[6] Ohta H, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T and Hosono H 2003 Appl. Phys. Lett. 83 1029
[7] Ye L, Li H, Chen Z F and Xu J B 2016 ACS Photon. 3 692
[8] Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X and Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362
[9] Zhang S, Zhang X R, Ren F, Yin Y, Feng T, Song W R, Wang G D, Liang M, Xu J L, Wang J W, Wang J X, Li J M, Yi X Y and Liu Z Q 2020 J. Appl. Phys. 128 155705
[10] Fan M M, Liu K W, Chen X, Zhang Z Z, Li B H, Zhao H F and Shen D Z 2015 J. Mater. Chem. C 3 313
[11] Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H and Tang W H 2015 Appl. Phys. Lett. 106 042105
[12] Zhi Y S, Li P G, Wang P C, Guo D Y, An Y H, Wu Z P, Chu X L, Shen J Q, Tang W H and Li C R 2016 AIP Adv. 6 015205
[13] Lee S J, Jeon S R, Song Y H, Choi Y J, Oh H G and Lee H Y 2021 J. Nanosci. Nanotechnol. 21 4881
[14] Xu G Y, Salvador A, Kim W, Fan Z, Lu C, Tang H, Morkoc H, Smith G, Estes M, Goldenberg B, Yang W and Krishnankutty S 1997 Appl. Phys. Lett. 71 2154
[15] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W and Tang W H 2017 J. Mater. Chem. C 5 10562
[16] Pernot C, Hirano A, Iwaya M, Detchprohm T, Amano H and Akasaki I 2000 Jpn. J. Appl. Phys. 39 L387
[17] Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Appl. Phys. Lett. 103 072105
[18] Qu Y Y, Wu Z P, Ai M L, Guo D Y, An Y H, Yang H J, Li L H and Tang W H 2016 J. Alloys Compd. 680 251
[19] Li M Q, Yang N, Wang G G, Zhang H Y and Han J C 2019 Appl. Surf. Sci. 471 694
[20] Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y and Jia R 2020 J. Alloys Compd. 821 153532
[21] Ma J, Xia X, Yan S, Li Y, Liang W, Yan J, Chen X, Wu D, Li X and Shi Z 2021 ACS Appl. Mater Interfaces 13 15409
[22] Ahn J, Ma J, Lee D, Lin Q, Park Y, Lee O, Sim S, Lee K, Yoo G and Heo J 2021 ACS Photon. 8 1619
[23] Chen Y, Zhang K, Yang X, Chen X, Sun J, Zhao Q, Li K and Shan C 2020 J. Phys. D:Appl. Phys. 53 484001
[24] Li S, Zhi Y, Lu C, Wu C, Yan Z, Liu Z, Yang J, Chu X, Guo D, Li P, Wu Z and Tang W 2021 J. Phys. Chem. Lett. 12 447
[25] Inudo S, Miyake M and Hirato T 2013 Phys. Status Solidi A 210 2395
[26] Uthayaraj S, Karunarathne D G B C, Kumara G R A, Murugathas T, Rasalingam S, Rajapakse R M G, Ravirajan P and Velauthapillai D 2019 Materials 12 2037
[27] Gotoh K, Cui M, Takahashi I, Kurokawa Y and Usami N 2017 Energy Procedia 124 598
[28] Murphy T, Moazzami T and Phillips J 2006 J. Electron. Mater. 35 543
[29] Ravadgar P, Horng R H, Yao S D, Lee H Y, Wu B R, Ou S L and Tu L W 2013 Opt. Express 21 24599
[30] Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[7] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[10] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[11] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[12] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[13] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[14] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[15] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
No Suggested Reading articles found!