ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction |
Wei-Ming Sun(孙伟铭)1, Bing-Yang Sun(孙兵阳)1, Shan Li(李山)1, Guo-Liang Ma(麻国梁)1, Ang Gao(高昂)1, Wei-Yu Jiang(江为宇)1, Mao-Lin Zhang(张茂林)2,3, Pei-Gang Li(李培刚)1, Zeng Liu(刘增)2,3,†, and Wei-Hua Tang(唐为华)1,2,3,‡ |
1 Laboratory of Information Functional Materials and Devices, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract The symmetric Ti/Au bi-layer point electrodes have been successfully patterned on the β-Ga2O3 films which are prepared by metal-organic chemical vapor deposition (MOCVD) and the γ-CuI films which are prepared by spin-coating. The fabricated heterojunction has a large open circuit voltage (Voc) of 0.69 V, desired for achieving self-powered operation of a photodetector. Irradiated by 254-nm ultraviolet (UV) light, when the bias voltage is -5 V, the dark current (Idark) of the device is 0.47 pA, the photocurrent (Iphoto) is -50.93 nA, and the photo-to-dark current ratio (Iphoto/Idark) reaches about 1.08×105. The device has a stable and fast response speed in different wavelengths, the rise time (τr) and decay time (τd) are 0.762 s and 1.741 s under 254-nm UV light illumination, respectively. While the τr and τd are 10.709 s and 7.241 s under 365-nm UV light illumination, respectively. The time-dependent (I-t) response (photocurrent in the order of 10-10 A) can be clearly distinguished at a small light intensity of 1 μW·cm-2. The internal physical mechanism affecting the device performances is discussed by the band diagram and charge carrier transfer theory.
|
Received: 03 August 2021
Revised: 14 September 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.70.-a
|
(Optical materials)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grunt No. 61774019). |
Corresponding Authors:
Zeng Liu, Wei-Hua Tang
E-mail: zengliu@njupt.edu.cn;whtang@njupt.edu.cn
|
Cite this article:
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华) A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction 2022 Chin. Phys. B 31 024205
|
[1] Sang L, Liao M and Sumiya M 2013 Sensors 13 10482 [2] Lin C H and Liu C W 2010 Sensors 10 8797 [3] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A and Fang X S 2015 Mater. Today 18 493 [4] Xu B B, Shen H L, Xu Y J, Ge J W, Wang S, Zhao Q C and Lai B K 2021 J. Alloys Compd. 874 9 [5] Wang L, Jie J S, Shao Z B, Zhang Q, Zhang X H, Wang Y M, Sun Z and Lee S T 2015 Adv. Funct. Mater. 25 2910 [6] Ohta H, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T and Hosono H 2003 Appl. Phys. Lett. 83 1029 [7] Ye L, Li H, Chen Z F and Xu J B 2016 ACS Photon. 3 692 [8] Zeng L H, Wang M Z, Hu H, Nie B, Yu Y Q, Wu C Y, Wang L, Hu J G, Xie C, Liang F X and Luo L B 2013 ACS Appl. Mater. Interfaces 5 9362 [9] Zhang S, Zhang X R, Ren F, Yin Y, Feng T, Song W R, Wang G D, Liang M, Xu J L, Wang J W, Wang J X, Li J M, Yi X Y and Liu Z Q 2020 J. Appl. Phys. 128 155705 [10] Fan M M, Liu K W, Chen X, Zhang Z Z, Li B H, Zhao H F and Shen D Z 2015 J. Mater. Chem. C 3 313 [11] Guo D Y, Wu Z P, An Y H, Li P G, Wang P C, Chu X L, Guo X C, Zhi Y S, Lei M, Li L H and Tang W H 2015 Appl. Phys. Lett. 106 042105 [12] Zhi Y S, Li P G, Wang P C, Guo D Y, An Y H, Wu Z P, Chu X L, Shen J Q, Tang W H and Li C R 2016 AIP Adv. 6 015205 [13] Lee S J, Jeon S R, Song Y H, Choi Y J, Oh H G and Lee H Y 2021 J. Nanosci. Nanotechnol. 21 4881 [14] Xu G Y, Salvador A, Kim W, Fan Z, Lu C, Tang H, Morkoc H, Smith G, Estes M, Goldenberg B, Yang W and Krishnankutty S 1997 Appl. Phys. Lett. 71 2154 [15] Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z P, Chen Z W and Tang W H 2017 J. Mater. Chem. C 5 10562 [16] Pernot C, Hirano A, Iwaya M, Detchprohm T, Amano H and Akasaki I 2000 Jpn. J. Appl. Phys. 39 L387 [17] Nakagomi S, Momo T, Takahashi S and Kokubun Y 2013 Appl. Phys. Lett. 103 072105 [18] Qu Y Y, Wu Z P, Ai M L, Guo D Y, An Y H, Yang H J, Li L H and Tang W H 2016 J. Alloys Compd. 680 251 [19] Li M Q, Yang N, Wang G G, Zhang H Y and Han J C 2019 Appl. Surf. Sci. 471 694 [20] Yu J, Dong L, Peng B, Yuan L, Huang Y, Zhang L, Zhang Y and Jia R 2020 J. Alloys Compd. 821 153532 [21] Ma J, Xia X, Yan S, Li Y, Liang W, Yan J, Chen X, Wu D, Li X and Shi Z 2021 ACS Appl. Mater Interfaces 13 15409 [22] Ahn J, Ma J, Lee D, Lin Q, Park Y, Lee O, Sim S, Lee K, Yoo G and Heo J 2021 ACS Photon. 8 1619 [23] Chen Y, Zhang K, Yang X, Chen X, Sun J, Zhao Q, Li K and Shan C 2020 J. Phys. D:Appl. Phys. 53 484001 [24] Li S, Zhi Y, Lu C, Wu C, Yan Z, Liu Z, Yang J, Chu X, Guo D, Li P, Wu Z and Tang W 2021 J. Phys. Chem. Lett. 12 447 [25] Inudo S, Miyake M and Hirato T 2013 Phys. Status Solidi A 210 2395 [26] Uthayaraj S, Karunarathne D G B C, Kumara G R A, Murugathas T, Rasalingam S, Rajapakse R M G, Ravirajan P and Velauthapillai D 2019 Materials 12 2037 [27] Gotoh K, Cui M, Takahashi I, Kurokawa Y and Usami N 2017 Energy Procedia 124 598 [28] Murphy T, Moazzami T and Phillips J 2006 J. Electron. Mater. 35 543 [29] Ravadgar P, Horng R H, Yao S D, Lee H Y, Wu B R, Ou S L and Tu L W 2013 Opt. Express 21 24599 [30] Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|