Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018504    DOI: 10.1088/1674-1056/ac6dbd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer

Hsiang-Chun Wang(王祥骏)1, Yuheng Lin(林钰恒)1, Xiao Liu(刘潇)1, Xuanhua Deng(邓煊华)1, Jianwei Ben(贲建伟)1, Wenjie Yu(俞文杰)2, Deliang Zhu(朱德亮)1, and Xinke Liu(刘新科)1,†
1 College of Materials Science and Engineering, Institute of Microelectronics(IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China;
2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  Photodetectors based on two-dimensional (2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals heterojunctions, a conductive band minimum (CBM) matched self-driven SnS2/WS2 van der Waals heterojunction photodetector based on a SiO2/Si substrate has been designed. The device exhibits a positive current at zero voltage under 365 nm laser illumination. This is attributed to the built-in electric field at the interface of the SnS2 and WS2 layer, which will separate and transport the photogenerated carriers, even at zero bias voltage. In addition, the Al2O3 layer is covered by the surface of the SnS2/WS2 photodetector to further improve the performance, because the Al2O3 layer will introduce tensile stress on the surface of the 2D materials leading to a higher electron concentration and smaller effective mass of electrons in the films. This work provides an idea for the research of self-driven photodetectors based on a van der Waals heterogeneous junction.
Keywords:  SnS2/WS2 heterogeneous junction      Al2O3 layer      self-driven      photodetector  
Received:  17 January 2022      Revised:  26 March 2022      Accepted manuscript online:  07 May 2022
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.47.Fg (Semiconductor surfaces)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974144, 62004127, and 12074263), the Science and Technology Foundation of Shenzhen (Grant No. JSGG20191129114216474), and the "National" Taipei University of Technology-Shenzhen University Joint Research Program, China (Grant No. 2020009).
Corresponding Authors:  Xinke Liu     E-mail:  xkliu@szu.edu.cn

Cite this article: 

Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科) A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer 2023 Chin. Phys. B 32 018504

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[4] Liu X and Hersam M C 2018 Adv. Mater. 30 1801586
[5] Zhang W, Wang Q, Chen Y, Wang Z and Wee A T S 2016 2D Mater. 3 022001
[6] Ovchinnikov D, Allain A, Huang Y S, Dumcenco D and Kis A 2014 ACS Nano 8 8174
[7] Hu Z, Wu Z, Cheng H, He J, Ni Z and Chen W 2018 Chem. Soc. Rev. 47 3100
[8] Liu C, Wang B, Mu C, Zhai K, Wen F, Xiang J, Nie A and Liu Z 2020 J. Magn. Magn. Mater. 502 166432
[9] Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater. 29 1806878
[10] Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B and Tsang Y H 2020 Adv. Mater. 32 2004412
[11] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[12] Liu X K, Deng X H, Li X H, Chiu H C, Chen Y, Botcha V D, Wang M, Yu W and Lin C H 2020 J. Alloys Compd. 830 154716
[13] Han J, Li J, Liu W, Li H, Fan X and Huang K 2020 Opt. Commun. 473 125931
[14] Wang X, Cui Y, Li T, Lei M, Li J and Wei Z 2018 Adv. Opt. Mater. 7 1801274
[15] Iqbal M W, Iqbal M Z, Khan M F, Shehzad M A, Seo Y, Park J H, Hwang C and Eom J 2015 Sci. Rep. 5 10699
[16] Wei J, Wang F, Zhang B, Shan X, Di X, Li Y, Feng Y and Zhang K 2019 Appl. Surf. Sci. 483 1136
[17] Ko K Y, J. Song G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J, Lee T, Park J and Kim H J 2016 ACS Nano 10 9287
[18] Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H and Dubey M 2016 Nano Res. 9 1543
[19] Wei Z M and Xia J B 2019 Acta Phys. Sin. 68 163201 (in Chinese)
[20] Khan M F, Ahmed F, Rehman S, Akhtar I, Rehman M A, Shinde P A, Khan K, Kim D, Eom J, Lipsanen H and Sun Z 2020 Nanoscale 12 21280
[21] Kumar S, Sharma A, Ho Y T, Pandey A, Tomar M, Kapoor A K, Chang E Y and Gupt V 2020 J. Alloys Compd. 835 155222
[22] Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B and Tsang Y H 2019 Adv. Sci. 6 1901134
[23] Perumal P, Ulaganathan R K, Sankar R and Zhu L 2021 Appl. Surf. Sci. 535 147480
[24] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743
[25] Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666
[26] Tao Y R, Wu X C, Wang W and Wang J N 2015 J. Mater. Chem. C 3 1347
[27] Wu J J, Tao Y R, Wu Y and Wu X C 2016 Sens. Actuators B 231 211
[28] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213
[29] Huo N, Kang J, Wei Z, Li S S, Li J and Wei S H 2014 Adv. Funct. Mater. 24 7025
[30] Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X W, Wang G P, Zheng S Z and Yang S H 2021 Adv. Mater. 33 2005557
[31] Liu X K, Wang J L, Xu C Y, Luo J L, Liang D S, Cen Y N, Lv Y M and Li Z W 2019 Acta Phys.-Chim. Sin. 35 1134
[32] Yu J, Suleiman A A, Zheng Z, Zhou X and Zhai T 2020 Adv. Funct. Mater. 30 2001650
[33] Liu X K, Chen Y X, Li D B, Wang S W, Ting C C, Chen L, Ang K A, Qiu C W, Chueh Y L, Sun X J and Kuo H C 2019 Photonics Res. 7 311
[34] Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X and Jie J S 2021 ACS Nano 15 10119
[35] Reddy C S, Willars-Rodriguez F J and Bon R R 2021 Nanotechnology 32 095202
[36] Deng W J, You C Y and Zhang Y Z 2021 IEEE Sens. J. 21 4044
[37] Zhou C J, Zhang S Y, Lv Z, Ma Z C, Yu C, Feng Z H and Chan M S 2020 npj 2D Mater. Appl. 4 46
[38] Zhang Q L, Shou M H, Xu Y C, Zheng J X, Wen X B, Zhao Y, Wang H, Liu L L and Xie Z Q 2020 J. Mater. Chem. C. 8 16506
[39] Gao W, Zhang S, Zhang F, Wen P T, Zhang L, Sun Y M, Chen H Y, Zheng Z Q, Yang M M, Luo D X, Huo N J and Li J B 2020 Adv. Electron. Mater. 2000964
[40] Vikraman D, Liu H, Hussain S, Karuppasamy K, Youi H K, Jung J, Kang J and Kim H S 2021 Appl. Surf. Sci. 543 148863
[41] Ren X H, Wang B, Huang Z Y, Qiao H, Duan C G, Zhou Y, Zhong J X, Wang Z Y and Qi X 2021 Flatchem 25 100215
[42] Li P and Zhang Z K 2020 ACS Appl. Mater. 12 58132
[43] Gao S, Wang Z Q, Wang H D, Meng F X, Wang P F, Chen S, Zeng Y H, Zhao J L, Hu H G, Cao R, Xu Z Q, Guo Z N and Zhang H 2021 Adv. Mater. Interfaces 8 2001730
[44] He Z B, Guo J X, Li S D, Lei Z C, Lin L, Ke Y Z, Jie W J, Gong T X, Lin Y, Cheng T D, Huang W and Zhang X S 2020 Adv. Mater. Interfaces 7 1901848
[45] Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K and Zhai T Y 2018 Nano Energy 51 45
[46] Tian H, Meng X C, Yang J H, Fan C, Yuan S, An X, Sun C, Zhang Y H, Wang M J, Zheng H X, Wei Z M and Li E P 2020 ACS Appl. Nano Mater. 3 6847
[47] Whittles T J, L. Burton A, Skelton J M, Walsh A, Veal T D and Dhanak V R 2016 Chem. Mater. 28 3718
[48] Wang H C, Hong Y, Chen Z, Lao C, Lu Y, Yang Z, Zhu Y and Liu X K 2020 Nanoscale Res. Lett. 15 176
[49] Li K, Ang K W, Lv Y M and Liu X K 2016 Appl. Phys. Lett. 109 261901
[50] Li Z, Wu J, Wang C, Zhang H, Yu W, Lu Y and Liu X 2020 J. Nanophotonics 9 1579
[51] Xie Y, Wu E X, Geng G Y, Zhang D H, Hu X D and Liu J 2021 Appl. Phys. Lett. 118 133103
[52] Jia C, Huang X W, Wu D, Tian Y Z, Guo J W, Zhao Z H, Shi Z F, Tian Y T, Jie J S and Li X J 2020 Nanoscale 12 4435
[53] Ning J, Zhou Y, Zhang J C, Lu W, Dong J G, Yan C C, Wang D, Shen X, Feng X, Zhou H and Hao Y 2020 Appl. Phys. Lett. 117 163104
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[4] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[5] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[6] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[7] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[8] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[9] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[10] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[11] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[12] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[13] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[14] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[15] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
No Suggested Reading articles found!