INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer |
Hsiang-Chun Wang(王祥骏)1, Yuheng Lin(林钰恒)1, Xiao Liu(刘潇)1, Xuanhua Deng(邓煊华)1, Jianwei Ben(贲建伟)1, Wenjie Yu(俞文杰)2, Deliang Zhu(朱德亮)1, and Xinke Liu(刘新科)1,† |
1 College of Materials Science and Engineering, Institute of Microelectronics(IME), Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China; 2 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China |
|
|
Abstract Photodetectors based on two-dimensional (2D) materials have attracted considerable attention because of their unique properties. To further improve the performance of self-driven photodetectors based on van der Waals heterojunctions, a conductive band minimum (CBM) matched self-driven SnS2/WS2 van der Waals heterojunction photodetector based on a SiO2/Si substrate has been designed. The device exhibits a positive current at zero voltage under 365 nm laser illumination. This is attributed to the built-in electric field at the interface of the SnS2 and WS2 layer, which will separate and transport the photogenerated carriers, even at zero bias voltage. In addition, the Al2O3 layer is covered by the surface of the SnS2/WS2 photodetector to further improve the performance, because the Al2O3 layer will introduce tensile stress on the surface of the 2D materials leading to a higher electron concentration and smaller effective mass of electrons in the films. This work provides an idea for the research of self-driven photodetectors based on a van der Waals heterogeneous junction.
|
Received: 17 January 2022
Revised: 26 March 2022
Accepted manuscript online: 07 May 2022
|
PACS:
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
68.47.Fg
|
(Semiconductor surfaces)
|
|
73.40.Lq
|
(Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974144, 62004127, and 12074263), the Science and Technology Foundation of Shenzhen (Grant No. JSGG20191129114216474), and the "National" Taipei University of Technology-Shenzhen University Joint Research Program, China (Grant No. 2020009). |
Corresponding Authors:
Xinke Liu
E-mail: xkliu@szu.edu.cn
|
Cite this article:
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科) A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer 2023 Chin. Phys. B 32 018504
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451 [3] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [4] Liu X and Hersam M C 2018 Adv. Mater. 30 1801586 [5] Zhang W, Wang Q, Chen Y, Wang Z and Wee A T S 2016 2D Mater. 3 022001 [6] Ovchinnikov D, Allain A, Huang Y S, Dumcenco D and Kis A 2014 ACS Nano 8 8174 [7] Hu Z, Wu Z, Cheng H, He J, Ni Z and Chen W 2018 Chem. Soc. Rev. 47 3100 [8] Liu C, Wang B, Mu C, Zhai K, Wen F, Xiang J, Nie A and Liu Z 2020 J. Magn. Magn. Mater. 502 166432 [9] Zeng L H, Wu D, Lin S H, Xie C, Yuan H Y, Lu W, Lau S P, Chai Y, Luo L B, Li Z J and Tsang Y H 2019 Adv. Funct. Mater. 29 1806878 [10] Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B and Tsang Y H 2020 Adv. Mater. 32 2004412 [11] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [12] Liu X K, Deng X H, Li X H, Chiu H C, Chen Y, Botcha V D, Wang M, Yu W and Lin C H 2020 J. Alloys Compd. 830 154716 [13] Han J, Li J, Liu W, Li H, Fan X and Huang K 2020 Opt. Commun. 473 125931 [14] Wang X, Cui Y, Li T, Lei M, Li J and Wei Z 2018 Adv. Opt. Mater. 7 1801274 [15] Iqbal M W, Iqbal M Z, Khan M F, Shehzad M A, Seo Y, Park J H, Hwang C and Eom J 2015 Sci. Rep. 5 10699 [16] Wei J, Wang F, Zhang B, Shan X, Di X, Li Y, Feng Y and Zhang K 2019 Appl. Surf. Sci. 483 1136 [17] Ko K Y, J. Song G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J, Lee T, Park J and Kim H J 2016 ACS Nano 10 9287 [18] Tian H, Chin M L, Najmaei S, Guo Q, Xia F, Wang H and Dubey M 2016 Nano Res. 9 1543 [19] Wei Z M and Xia J B 2019 Acta Phys. Sin. 68 163201 (in Chinese) [20] Khan M F, Ahmed F, Rehman S, Akhtar I, Rehman M A, Shinde P A, Khan K, Kim D, Eom J, Lipsanen H and Sun Z 2020 Nanoscale 12 21280 [21] Kumar S, Sharma A, Ho Y T, Pandey A, Tomar M, Kapoor A K, Chang E Y and Gupt V 2020 J. Alloys Compd. 835 155222 [22] Zeng L H, Chen Q M, Zhang Z X, Wu D, Yuan H Y, Li Y Y, Qarony W, Lau S P, Luo L B and Tsang Y H 2019 Adv. Sci. 6 1901134 [23] Perumal P, Ulaganathan R K, Sankar R and Zhu L 2021 Appl. Surf. Sci. 535 147480 [24] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A and Sutter P 2014 ACS Nano 8 10743 [25] Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666 [26] Tao Y R, Wu X C, Wang W and Wang J N 2015 J. Mater. Chem. C 3 1347 [27] Wu J J, Tao Y R, Wu Y and Wu X C 2016 Sens. Actuators B 231 211 [28] Kuc A, Zibouche N and Heine T 2011 Phys. Rev. B 83 245213 [29] Huo N, Kang J, Wei Z, Li S S, Li J and Wei S H 2014 Adv. Funct. Mater. 24 7025 [30] Wang J, Xiao S, Qian W, Zhang K, Yu J, Xu X W, Wang G P, Zheng S Z and Yang S H 2021 Adv. Mater. 33 2005557 [31] Liu X K, Wang J L, Xu C Y, Luo J L, Liang D S, Cen Y N, Lv Y M and Li Z W 2019 Acta Phys.-Chim. Sin. 35 1134 [32] Yu J, Suleiman A A, Zheng Z, Zhou X and Zhai T 2020 Adv. Funct. Mater. 30 2001650 [33] Liu X K, Chen Y X, Li D B, Wang S W, Ting C C, Chen L, Ang K A, Qiu C W, Chueh Y L, Sun X J and Kuo H C 2019 Photonics Res. 7 311 [34] Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X and Jie J S 2021 ACS Nano 15 10119 [35] Reddy C S, Willars-Rodriguez F J and Bon R R 2021 Nanotechnology 32 095202 [36] Deng W J, You C Y and Zhang Y Z 2021 IEEE Sens. J. 21 4044 [37] Zhou C J, Zhang S Y, Lv Z, Ma Z C, Yu C, Feng Z H and Chan M S 2020 npj 2D Mater. Appl. 4 46 [38] Zhang Q L, Shou M H, Xu Y C, Zheng J X, Wen X B, Zhao Y, Wang H, Liu L L and Xie Z Q 2020 J. Mater. Chem. C. 8 16506 [39] Gao W, Zhang S, Zhang F, Wen P T, Zhang L, Sun Y M, Chen H Y, Zheng Z Q, Yang M M, Luo D X, Huo N J and Li J B 2020 Adv. Electron. Mater. 2000964 [40] Vikraman D, Liu H, Hussain S, Karuppasamy K, Youi H K, Jung J, Kang J and Kim H S 2021 Appl. Surf. Sci. 543 148863 [41] Ren X H, Wang B, Huang Z Y, Qiao H, Duan C G, Zhou Y, Zhong J X, Wang Z Y and Qi X 2021 Flatchem 25 100215 [42] Li P and Zhang Z K 2020 ACS Appl. Mater. 12 58132 [43] Gao S, Wang Z Q, Wang H D, Meng F X, Wang P F, Chen S, Zeng Y H, Zhao J L, Hu H G, Cao R, Xu Z Q, Guo Z N and Zhang H 2021 Adv. Mater. Interfaces 8 2001730 [44] He Z B, Guo J X, Li S D, Lei Z C, Lin L, Ke Y Z, Jie W J, Gong T X, Lin Y, Cheng T D, Huang W and Zhang X S 2020 Adv. Mater. Interfaces 7 1901848 [45] Wu W H, Zhang Q, Zhou X, Li L, Su J W, Wang F K and Zhai T Y 2018 Nano Energy 51 45 [46] Tian H, Meng X C, Yang J H, Fan C, Yuan S, An X, Sun C, Zhang Y H, Wang M J, Zheng H X, Wei Z M and Li E P 2020 ACS Appl. Nano Mater. 3 6847 [47] Whittles T J, L. Burton A, Skelton J M, Walsh A, Veal T D and Dhanak V R 2016 Chem. Mater. 28 3718 [48] Wang H C, Hong Y, Chen Z, Lao C, Lu Y, Yang Z, Zhu Y and Liu X K 2020 Nanoscale Res. Lett. 15 176 [49] Li K, Ang K W, Lv Y M and Liu X K 2016 Appl. Phys. Lett. 109 261901 [50] Li Z, Wu J, Wang C, Zhang H, Yu W, Lu Y and Liu X 2020 J. Nanophotonics 9 1579 [51] Xie Y, Wu E X, Geng G Y, Zhang D H, Hu X D and Liu J 2021 Appl. Phys. Lett. 118 133103 [52] Jia C, Huang X W, Wu D, Tian Y Z, Guo J W, Zhao Z H, Shi Z F, Tian Y T, Jie J S and Li X J 2020 Nanoscale 12 4435 [53] Ning J, Zhou Y, Zhang J C, Lu W, Dong J G, Yan C C, Wang D, Shen X, Feng X, Zhou H and Hao Y 2020 Appl. Phys. Lett. 117 163104 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|