INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3 |
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣)†, Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林)‡, and Chong-Xin Shan(单崇新)§ |
Key Laboratory of Materials Physics, Ministry of Education, Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China |
|
|
Abstract Gallium oxide (Ga2O3) is a promising material for deep-ultraviolet (DUV) detection. In this work, Chlorin e6 (Ce6) has been integrated with Ga2O3 to achieve a DUV and visible dual-band photodetector, which can achieve multiple target information and improve the recognition rate. The photodetector shows two separate response bands at 268 nm and 456 nm. The DUV response band has a responsivity of 9.63 A/W with a full width at half maximum (FWHM) of 54.5 nm; the visible response band has a responsivity of 1.17 A/W with an FWHM of 45.3 nm. This work may provide a simple way to design and fabricate photodetectors with dual-band response.
|
Received: 23 February 2021
Revised: 30 March 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
07.60.Rd
|
(Visible and ultraviolet spectrometers)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
Corresponding Authors:
Xun Yang, Lin Dong, Chong-Xin Shan
E-mail: yangxun9013@163.com;ldong@zzu.edu.cn;cxshan@zzu.edu.cn
|
Cite this article:
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新) Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3 2021 Chin. Phys. B 30 078504
|
[1] Gao L, Ge C, Li W H, Jia C C, Zeng K, Pan W C, Wu H D, Zhao Y, He Y S, He J G, Zhao Z X, Niu G D, Guo X F, De Arquer F P G, Sargent E H and Tang J 2017 Adv. Funct. Mater. 27 1702360 [2] Du S, Lu W, Ali A, et al. 2017 Adv. Mater. 29 1700463 [3] Zhao J L, Yan L L, Chan W K E, Chen S M, Luo D and Zhu F R 2020 Sci. Adv. 6 eaaw8065 [4] Wu Y, Li X M, Wei Y, Gu Y and Zeng H B 2018 Nanoscale 10 359 [5] Huang L J, Li J Q, Lu M Y, Chen Y Q, Zhu H J and Liu H Y 2020 Chin. Phys. B 29 014201 [6] Zhang Y, Xu W X, Xu X J, Cai J, Yang W and Fang X S 2019 J. Phys. Chem. Lett. 10 836 [7] Ariyawansa G, Apalkov V, Perera A G U, Matsik S G, Huang G and Bhattacharya P 2008 Appl. Phys. Lett. 92 111104 [8] Hu R X, Ma X L, An C H and Liu J 2019 Chin. Phys. B 28 117802 [9] Li K Y, Y X, Tian Y Z, Chen Y C, Lin C N, Zhang Z F, Xu Z Y, Zang J H and Shan C X 2020 Sci. China-Phys. Mech. Astron. 63 117312 [10] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P and Tang W H 2021 Chin. Phys. B 30 017302 [11] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727 [12] De Iacovo A, Venettacci C, Giansante C and Colace L 2020 Nanoscale 12 10044 [13] Lightbourne S K S, Gobeze H B, Subbaiyan N K and D'souza F 2015 J. Photon. Energy 5 053089 [14] Wang X F, Tamiaki H, Kitao O, Ikeuchi T and Sasaki S I 2013 J. Power Sources 242 860 [15] Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mat. Interfaces 10 22419 [16] Huang Y, Zheng W, Qiu Y and Hu P 2016 ACS Appl. Mater. Interfaces 8 23362 [17] Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small 8 966 [18] Wang J Z, Lu L, Lotya M, Coleman J N, Chou S L, Liu H K, Minett A I and Chen J 2013 Adv. Energy Mater. 3 798 [19] Chen Y C, Lu Y J, Yang X, Li S F, Li K Y, Chen X X, Xu Z Y, Zang J H and Shan C X 2021 Mater. Today Phys. 18 100369 [20] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136 [21] An Y H, Chu X L, Huang Y Q, Zhi Y S, Guo D Y, Li P G, Wu Z P and Tang W H 2016 Prog. Nat. Sci. 26 65 [22] Feng Q, Li X, Han G Q, Huang L, Li F G, Tang W H, Zhang J C and Hao Y 2017 Opt. Mater. Express 7 1240 [23] Lee S H, Park Y S, Yoo G W and Heo J S 2017 Appl. Phys. Lett. 111 223106 [24] Mukherjee S, Maiti R, Midya A, Das S and Ray S K 2015 ACS Photon. 2 760 [25] Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B 94 035445 [26] Li S, Li G, Yang L S and Li K Y 2020 Chin. Phys. B 29 046104 [27] Liu H, Gao F, Hu Y X, Zhang J, Wang L F, Feng W, Hou J and Hu P A 2019 2D Mater. 6 035025 [28] Wu J 2021 Chin. Phys. B 30 024208 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|