Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣)†, Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林)‡, and Chong-Xin Shan(单崇新)§
Key Laboratory of Materials Physics, Ministry of Education, Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
Abstract Gallium oxide (Ga2O3) is a promising material for deep-ultraviolet (DUV) detection. In this work, Chlorin e6 (Ce6) has been integrated with Ga2O3 to achieve a DUV and visible dual-band photodetector, which can achieve multiple target information and improve the recognition rate. The photodetector shows two separate response bands at 268 nm and 456 nm. The DUV response band has a responsivity of 9.63 A/W with a full width at half maximum (FWHM) of 54.5 nm; the visible response band has a responsivity of 1.17 A/W with an FWHM of 45.3 nm. This work may provide a simple way to design and fabricate photodetectors with dual-band response.
Corresponding Authors:
Xun Yang, Lin Dong, Chong-Xin Shan
E-mail: yangxun9013@163.com;ldong@zzu.edu.cn;cxshan@zzu.edu.cn
Cite this article:
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新) Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3 2021 Chin. Phys. B 30 078504
[1] Gao L, Ge C, Li W H, Jia C C, Zeng K, Pan W C, Wu H D, Zhao Y, He Y S, He J G, Zhao Z X, Niu G D, Guo X F, De Arquer F P G, Sargent E H and Tang J 2017 Adv. Funct. Mater.27 1702360 [2] Du S, Lu W, Ali A, et al. 2017 Adv. Mater.29 1700463 [3] Zhao J L, Yan L L, Chan W K E, Chen S M, Luo D and Zhu F R 2020 Sci. Adv.6 eaaw8065 [4] Wu Y, Li X M, Wei Y, Gu Y and Zeng H B 2018 Nanoscale10 359 [5] Huang L J, Li J Q, Lu M Y, Chen Y Q, Zhu H J and Liu H Y 2020 Chin. Phys. B29 014201 [6] Zhang Y, Xu W X, Xu X J, Cai J, Yang W and Fang X S 2019 J. Phys. Chem. Lett.10 836 [7] Ariyawansa G, Apalkov V, Perera A G U, Matsik S G, Huang G and Bhattacharya P 2008 Appl. Phys. Lett.92 111104 [8] Hu R X, Ma X L, An C H and Liu J 2019 Chin. Phys. B28 117802 [9] Li K Y, Y X, Tian Y Z, Chen Y C, Lin C N, Zhang Z F, Xu Z Y, Zang J H and Shan C X 2020 Sci. China-Phys. Mech. Astron.63 117312 [10] Chu X L, Liu Z, Zhi Y S, Liu Y Y, Zhang S H, Wu C, Gao A, Li P G, Guo D Y, Wu Z P and Tang W H 2021 Chin. Phys. B30 017302 [11] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C6 5727 [12] De Iacovo A, Venettacci C, Giansante C and Colace L 2020 Nanoscale12 10044 [13] Lightbourne S K S, Gobeze H B, Subbaiyan N K and D'souza F 2015 J. Photon. Energy5 053089 [14] Wang X F, Tamiaki H, Kitao O, Ikeuchi T and Sasaki S I 2013 J. Power Sources242 860 [15] Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L and Huang F 2018 ACS Appl. Mat. Interfaces10 22419 [16] Huang Y, Zheng W, Qiu Y and Hu P 2016 ACS Appl. Mater. Interfaces8 23362 [17] Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small8 966 [18] Wang J Z, Lu L, Lotya M, Coleman J N, Chou S L, Liu H K, Minett A I and Chen J 2013 Adv. Energy Mater.3 798 [19] Chen Y C, Lu Y J, Yang X, Li S F, Li K Y, Chen X X, Xu Z Y, Zang J H and Shan C X 2021 Mater. Today Phys.18 100369 [20] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd.660 136 [21] An Y H, Chu X L, Huang Y Q, Zhi Y S, Guo D Y, Li P G, Wu Z P and Tang W H 2016 Prog. Nat. Sci.26 65 [22] Feng Q, Li X, Han G Q, Huang L, Li F G, Tang W H, Zhang J C and Hao Y 2017 Opt. Mater. Express7 1240 [23] Lee S H, Park Y S, Yoo G W and Heo J S 2017 Appl. Phys. Lett.111 223106 [24] Mukherjee S, Maiti R, Midya A, Das S and Ray S K 2015 ACS Photon.2 760 [25] Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B94 035445 [26] Li S, Li G, Yang L S and Li K Y 2020 Chin. Phys. B29 046104 [27] Liu H, Gao F, Hu Y X, Zhang J, Wang L F, Feng W, Hou J and Hu P A 2019 2D Mater.6 035025 [28] Wu J 2021 Chin. Phys. B30 024208
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.