INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response |
Zeng Liu(刘增)1,2,†, Yu-Song Zhi(支钰崧)3, Mao-Lin Zhang(张茂林)1,2, Li-Li Yang(杨莉莉)1,2, Shan Li(李山)4, Zu-Yong Yan(晏祖勇)4, Shao-Hui Zhang(张少辉)5, Dao-You Guo(郭道友)6, Pei-Gang Li(李培刚)4, Yu-Feng Guo(郭宇锋)1,2, and Wei-Hua Tang(唐为华)1,2,‡ |
1 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 China Academy of Launch Vehicle Technology, Beijing 100076, China; 4 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 5 Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; 6 Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China |
|
|
Abstract A 4$\times $4 beta-phase gallium oxide ($\beta $-Ga$_{2}$O$_{3}$) deep-ultraviolet (DUV) rectangular 10-fingers interdigital metal-semiconductor-metal (MSM) photodetector array of high photo responsivity is introduced. The Ga$_{2}$O$_{3}$ thin film is prepared through the metalorganic chemical vapor deposition technique, then used to construct the photodetector array via photolithography, lift-off, and ion beam sputtering methods. The one photodetector cell shows dark current of 1.94 pA, photo-to-dark current ratio of 6$\times $10$^{7}$, photo responsivity of 634.15 A$\cdot$W$^{-1}$, specific detectivity of 5.93$\times $10$^{11}$ cm$\cdot$Hz$^{1/2}\cdot$W$^{-1}$ (Jones), external quantum efficiency of 310000%, and linear dynamic region of 108.94 dB, indicating high performances for DUV photo detection. Furthermore, the 16-cell photodetector array displays uniform performances with decent deviation of 19.6% for photo responsivity.
|
Received: 28 October 2021
Revised: 28 February 2022
Accepted manuscript online: 02 March 2022
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
29.40.Wk
|
(Solid-state detectors)
|
|
95.55.Aq
|
(Charge-coupled devices, image detectors, and IR detector arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774019) and Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115 and XK1060921002). |
Corresponding Authors:
Zeng Liu, Wei-Hua Tang
E-mail: zengliu@njupt.edu.cn;whtang@njupt.edu.cn
|
Cite this article:
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华) A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response 2022 Chin. Phys. B 31 088503
|
[1] Monroy E, Omnes F and Calle D 2003 Semicond. Sci. Technol. 18 R33 [2] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L, Luo L B and Wu Y C 2019 Adv. Funct. Mater. 29 1806006 [3] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297 [4] Zheng W, Zhang Z, Lin R, Xu K, He J and Huang F 2016 Adv. Electron. Mater. 2 1600291 [5] Hu Q, Zheng W, Lin R, Xu Y and Huang F 2019 Carbon 147 427 [6] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493 [7] Shen Y, Yu D, Wang X, Huo C, Wu Y, Zhu Z and Zeng H 2018 Nanotechnology 29 085201 [8] Li F, Ma C, Wang H, Hu W, Yu W, Sheikh A D and Wu T 2015 Nat. Commun. 6 8238 [9] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105 [10] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504 [11] Chen X, Ren F, Gu S and Ye J 2019 Photon. Res. 7 381 [12] Xu J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753 [13] Kaur D and Kumar M 2021 Adv. Opt. Mater. 9 2002160 [14] Guo D, Guo Q, Chen Z, Wu Z, Li P and Tang W 2019 Mater. Today Phys. 11 100157 [15] Hong L, Hu Z, Zhang H, Xiong Y, Fan S, Kong C, Li W, Ye L and Li H 2021 J. Mater. Chem. C 9 10354 [16] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D 53 085105 [17] Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067 [18] Qian L X, Gu Z, Huang X, Liu H, Lv Y, Feng Z and Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837 [19] Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P and Tang W 2021 J. Phys. D 54 195104 [20] Qu Y, Wu Z, Ai M, Guo D, An Y, Yang H, Li L and Tang W 2016 J. Alloys Compd. 680 247 [21] Yu J, Nie Z, Dong L, Yuan L, Li D, Huang Y, Zhang L, Zhang Y and Jia R 2019 J. Alloys Compd. 798 458 [22] Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L and Tang W 2020 J. Mater. Chem. C 8 4502 [23] Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B and Fang X 2019 J. Phys. Chem. Lett. 10 6850 [24] Li S, Yan Z, Liu Z, Chen J, Zhi Y, Guo D, Li P, Wu Z and Tang W 2020 J. Mater. Chem. C 8 1292 [25] Liu Z, Zhi Y, Zhang S, Li S, Yan Z, Gao A, Zhang S, Guo D, Wang J, Wu Z, Li P and Tang W 2021 Sci. China Tech. Sci. 64 59 [26] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P and Tang W 2020 J. Mater. Chem. C 8 5071 [27] Jiang W, Liu Z, Li S, Yan Z, Lu C, Li P, Guo Y and Tang W 2021 IEEE Sens. J. 21 18663 [28] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P and Tang W 2019 J. Mater. Chem. C 7 13920 [29] Wu D, Zhao Z, Lu W, Rogée L, Zeng L, Lin P, Shi Z, Tian Y, Li X and Tsang Y H 2021 Nano Res. 14 1973 [30] Han Z, Liang H, Huo W, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833 [31] Yu S, Zhao X, Ding M, Tan P, Hou X, Zhang Z, Mu W, Jia Z, Tao X, Xu G and Long S 2021 IEEE Electron. Device Lett. 42 383 [32] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q and Liu M 2019 Adv. Electron. Mater. 5 1900389 [33] Kim S, Oh S and Kim J 2019 ACS Photon. 6 1026 [34] He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X and Zhang B 2018 Nanophotonics 7 1557 [35] McClintock R, Mayes K, Yasan A, Shiell D, Kung P and Razeghi M 2005 Appl. Phys. Lett. 86 011117 [36] Lamarre P, Hairston A, Tobin S P, Wong K K, Sood A K, Reine M B, Pophristic M, Birkham R, Ferguson I T, Singh R, Eddy Jr. C R, Chowdhury U, Wong M M, Dupuis R D, Kozodoy P and Tarsa E J 2001 Phys. Status Solidi A 188 289 [37] Yang B, Heng K, Li T, Collins C J, Wang S, Dupuis R D, Campbell J C, Schurman M J and Ferguson I T 2000 IEEE J. Quantum Electron. 36 1229 [38] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z and Tang W 2018 IEEE Photon. Technol. Lett. 30 993 [39] Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R and Nath D N 2019 IEEE Photon. Technol. Lett. 31 923 [40] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G and Tang W H 2021 IEEE Trans. Electron. Devices 68 3435 [41] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C and Shan C 2019 Adv. Funct. Mater. 29 1906040 [42] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X and Long S 2021 Adv. Sci. 8 2101106 [43] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D 53 085105 [44] Schottky W 1939 Z. Phys. 113 367 [45] Mott N F 1939 Proc. R. Soc. A 171 27 [46] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New York:Wiley) [47] Fang Y, Armin A, Meredith P and Huang J 2018 Nat. Photon. 13 1 [48] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433 [49] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2000 Science 325 1665 [50] Garrido J A, Monroy E, Izpura I and Munoz E 1998 Semicond. Sci. Technol. 13 563 [51] Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 [52] Wang X, Chen Z, Guo D, Zhang X, Wu Z, Li P and Tang W 2018 Opt. Mater. Express 8 2918 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|