Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 088503    DOI: 10.1088/1674-1056/ac597d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response

Zeng Liu(刘增)1,2,†, Yu-Song Zhi(支钰崧)3, Mao-Lin Zhang(张茂林)1,2, Li-Li Yang(杨莉莉)1,2, Shan Li(李山)4, Zu-Yong Yan(晏祖勇)4, Shao-Hui Zhang(张少辉)5, Dao-You Guo(郭道友)6, Pei-Gang Li(李培刚)4, Yu-Feng Guo(郭宇锋)1,2, and Wei-Hua Tang(唐为华)1,2,‡
1 College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 National and Local Joint Engineering Laboratory for RF Integration and Micro-Packing Technologies, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 China Academy of Launch Vehicle Technology, Beijing 100076, China;
4 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
5 Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;
6 Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  A 4$\times $4 beta-phase gallium oxide ($\beta $-Ga$_{2}$O$_{3}$) deep-ultraviolet (DUV) rectangular 10-fingers interdigital metal-semiconductor-metal (MSM) photodetector array of high photo responsivity is introduced. The Ga$_{2}$O$_{3}$ thin film is prepared through the metalorganic chemical vapor deposition technique, then used to construct the photodetector array via photolithography, lift-off, and ion beam sputtering methods. The one photodetector cell shows dark current of 1.94 pA, photo-to-dark current ratio of 6$\times $10$^{7}$, photo responsivity of 634.15 A$\cdot$W$^{-1}$, specific detectivity of 5.93$\times $10$^{11}$ cm$\cdot$Hz$^{1/2}\cdot$W$^{-1}$ (Jones), external quantum efficiency of 310000%, and linear dynamic region of 108.94 dB, indicating high performances for DUV photo detection. Furthermore, the 16-cell photodetector array displays uniform performances with decent deviation of 19.6% for photo responsivity.
Keywords:  Ga2O3      array photodetector      MOCVD      deep UV detection  
Received:  28 October 2021      Revised:  28 February 2022      Accepted manuscript online:  02 March 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  29.40.Wk (Solid-state detectors)  
  95.55.Aq (Charge-coupled devices, image detectors, and IR detector arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61774019) and Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115 and XK1060921002).
Corresponding Authors:  Zeng Liu, Wei-Hua Tang     E-mail:  zengliu@njupt.edu.cn;whtang@njupt.edu.cn

Cite this article: 

Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华) A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response 2022 Chin. Phys. B 31 088503

[1] Monroy E, Omnes F and Calle D 2003 Semicond. Sci. Technol. 18 R33
[2] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L, Luo L B and Wu Y C 2019 Adv. Funct. Mater. 29 1806006
[3] Mueller T, Xia F and Avouris P 2010 Nat. Photon. 4 297
[4] Zheng W, Zhang Z, Lin R, Xu K, He J and Huang F 2016 Adv. Electron. Mater. 2 1600291
[5] Hu Q, Zheng W, Lin R, Xu Y and Huang F 2019 Carbon 147 427
[6] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493
[7] Shen Y, Yu D, Wang X, Huo C, Wu Y, Zhu Z and Zeng H 2018 Nanotechnology 29 085201
[8] Li F, Ma C, Wang H, Hu W, Yu W, Sheikh A D and Wu T 2015 Nat. Commun. 6 8238
[9] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105
[10] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504
[11] Chen X, Ren F, Gu S and Ye J 2019 Photon. Res. 7 381
[12] Xu J, Zheng W and Huang F 2019 J. Mater. Chem. C 7 8753
[13] Kaur D and Kumar M 2021 Adv. Opt. Mater. 9 2002160
[14] Guo D, Guo Q, Chen Z, Wu Z, Li P and Tang W 2019 Mater. Today Phys. 11 100157
[15] Hong L, Hu Z, Zhang H, Xiong Y, Fan S, Kong C, Li W, Ye L and Li H 2021 J. Mater. Chem. C 9 10354
[16] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D 53 085105
[17] Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L and Tang W 2014 Opt. Mater. Express 4 1067
[18] Qian L X, Gu Z, Huang X, Liu H, Lv Y, Feng Z and Zhang W 2021 ACS Appl. Mater. Interfaces 13 40837
[19] Liu Z, Zhang S, Zhi Y, Li S, Yan Z, Chu X, Bian A, Li P and Tang W 2021 J. Phys. D 54 195104
[20] Qu Y, Wu Z, Ai M, Guo D, An Y, Yang H, Li L and Tang W 2016 J. Alloys Compd. 680 247
[21] Yu J, Nie Z, Dong L, Yuan L, Li D, Huang Y, Zhang L, Zhang Y and Jia R 2019 J. Alloys Compd. 798 458
[22] Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L and Tang W 2020 J. Mater. Chem. C 8 4502
[23] Wang H, Chen H, Li L, Wang Y, Su L, Bian W, Li B and Fang X 2019 J. Phys. Chem. Lett. 10 6850
[24] Li S, Yan Z, Liu Z, Chen J, Zhi Y, Guo D, Li P, Wu Z and Tang W 2020 J. Mater. Chem. C 8 1292
[25] Liu Z, Zhi Y, Zhang S, Li S, Yan Z, Gao A, Zhang S, Guo D, Wang J, Wu Z, Li P and Tang W 2021 Sci. China Tech. Sci. 64 59
[26] Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P and Tang W 2020 J. Mater. Chem. C 8 5071
[27] Jiang W, Liu Z, Li S, Yan Z, Lu C, Li P, Guo Y and Tang W 2021 IEEE Sens. J. 21 18663
[28] Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P and Tang W 2019 J. Mater. Chem. C 7 13920
[29] Wu D, Zhao Z, Lu W, Rogée L, Zeng L, Lin P, Shi Z, Tian Y, Li X and Tsang Y H 2021 Nano Res. 14 1973
[30] Han Z, Liang H, Huo W, Zhu X, Du X and Mei Z 2020 Adv. Opt. Mater. 8 1901833
[31] Yu S, Zhao X, Ding M, Tan P, Hou X, Zhang Z, Mu W, Jia Z, Tao X, Xu G and Long S 2021 IEEE Electron. Device Lett. 42 383
[32] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q and Liu M 2019 Adv. Electron. Mater. 5 1900389
[33] Kim S, Oh S and Kim J 2019 ACS Photon. 6 1026
[34] He T, Zhao Y, Zhang X, Lin W, Fu K, Sun C, Shi F, Ding X, Yu G, Zhang K, Lu S, Zhang X and Zhang B 2018 Nanophotonics 7 1557
[35] McClintock R, Mayes K, Yasan A, Shiell D, Kung P and Razeghi M 2005 Appl. Phys. Lett. 86 011117
[36] Lamarre P, Hairston A, Tobin S P, Wong K K, Sood A K, Reine M B, Pophristic M, Birkham R, Ferguson I T, Singh R, Eddy Jr. C R, Chowdhury U, Wong M M, Dupuis R D, Kozodoy P and Tarsa E J 2001 Phys. Status Solidi A 188 289
[37] Yang B, Heng K, Li T, Collins C J, Wang S, Dupuis R D, Campbell J C, Schurman M J and Ferguson I T 2000 IEEE J. Quantum Electron. 36 1229
[38] Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z and Tang W 2018 IEEE Photon. Technol. Lett. 30 993
[39] Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R and Nath D N 2019 IEEE Photon. Technol. Lett. 31 923
[40] Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G and Tang W H 2021 IEEE Trans. Electron. Devices 68 3435
[41] Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C and Shan C 2019 Adv. Funct. Mater. 29 1906040
[42] Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X and Long S 2021 Adv. Sci. 8 2101106
[43] Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z and Tang W 2020 J. Phys. D 53 085105
[44] Schottky W 1939 Z. Phys. 113 367
[45] Mott N F 1939 Proc. R. Soc. A 171 27
[46] Sze S M and Ng K K 2007 Physics of Semiconductor Devices (New York:Wiley)
[47] Fang Y, Armin A, Meredith P and Huang J 2018 Nat. Photon. 13 1
[48] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[49] Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2000 Science 325 1665
[50] Garrido J A, Monroy E, Izpura I and Munoz E 1998 Semicond. Sci. Technol. 13 563
[51] Kockum A F, Miranowicz A, Liberato S D, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
[52] Wang X, Chen Z, Guo D, Zhang X, Wu Z, Li P and Tang W 2018 Opt. Mater. Express 8 2918
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[4] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[5] Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮). Chin. Phys. B, 2021, 30(11): 118101.
[6] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[7] Magnesium incorporation efficiencies in MgxZn1-xO films on ZnO substrates grown by metalorganic chemical vapor deposition
Qi-Chang Hu(胡启昌), Kai Ding(丁凯). Chin. Phys. B, 2017, 26(6): 068104.
[8] Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(2): 027801.
[9] Role of vacancy-type defects in magnetism of GaMnN
Hai-Ying Xing(邢海英), Yu Chen(陈雨), Chen Ji(纪骋), Sheng-Xiang Jiang(蒋盛翔), Meng-Yao Yuan(苑梦尧), Zhi-Ying Guo(郭志英), Kun Li(李琨), Ming-Qi Cui(崔明启), Guo-Yi Zhang(张国义). Chin. Phys. B, 2016, 25(6): 067503.
[10] Control of symmetric properties of metamorphic In0.27Ga0.73As layers by substrate misorientation
Shu-Zhen Yu(于淑珍), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Kui-Long Li(李奎龙),Xu-Lu Zeng(曾徐路), Yong-Ming Zhao(赵勇明), Hui Yang(杨辉). Chin. Phys. B, 2016, 25(3): 038101.
[11] Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition
Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初). Chin. Phys. B, 2016, 25(2): 028103.
[12] High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H2O as an oxidizer
Jia-Yong Lin(林家勇), Yan-Li Pei(裴艳丽), Yi Zhuo(卓毅), Zi-Min Chen(陈梓敏), Rui-Qin Hu(胡锐钦), Guang-Shuo Cai(蔡广烁), Gang Wang(王钢). Chin. Phys. B, 2016, 25(11): 118506.
[13] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[14] Nucleation of GaSb on GaAs (001) by low pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Yang Hao-Yu (杨皓宇), Lü You (吕游), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2014, 23(8): 088110.
[15] Lg=100 nm T-shaped gate AlGaN/GaN HEMTs on Si substrates with non-planar source/drain regrowth of highly-doped n+-GaN layer by MOCVD
Huang Jie (黄杰), Li Ming (黎明), Tang Chak-Wah (邓泽华), Lau Kei-May (刘纪美). Chin. Phys. B, 2014, 23(12): 128102.
No Suggested Reading articles found!