Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017802    DOI: 10.1088/1674-1056/abb309
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots

Guangze Lu(陆光泽)1,2, Zunren Lv(吕尊仁)1, Zhongkai Zhang(张中恺)1,2, Xiaoguang Yang(杨晓光)1,2,†, and Tao Yang(杨涛)1,2
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Aiming to achieve InAs quantum dots (QDs) with a long carrier lifetime, the effects of Sb component in cap layers on the band alignment of the InAs/GaAsSb QDs have been studied. InAs QDs with high density and uniformity have been grown by molecular beam epitaxy. With increasing Sb composition, the InAs/GaAsSb QDs exhibit a significant red-shift and broadening photoluminescence (PL). With a high Sb component of 22%, the longest wavelength emission of the InAs/GaAs0.78Sb0.22 QDs occurs at 1.5 μ m at room temperature. The power-dependence PL measurements indicate that with a low Sb component of 14%, the InAs/GaAs0.86Sb0.14 QDs have a type-I and a type-II carrier recombination processes, respectively. With a high Sb component of 22%, the InAs/GaAs0.78Sb0.22 QDs have a pure type-II band alignment, with three type-II carrier recombination processes. Extracted from time-resolved PL decay traces, the carrier lifetime of the InAs/GaAs0.78Sb0.22 QDs reaches 16.86 ns, which is much longer than that of the InAs/GaAs0.86Sb0.14 QDs (2.07 ns). These results obtained here are meaningful to realize high conversion efficiency intermediate-band QD solar cells and other opto-electronic device.
Keywords:  quantum dots      type-II band alignment      intermediate-band solar cell      molecular beam epitaxy  
Received:  28 June 2020      Revised:  19 August 2020      Accepted manuscript online:  27 August 2020
PACS:  78.67.Hc (Quantum dots)  
  78.66.Fd (III-V semiconductors)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFB1503601 and 2017YFB0405302), the National Natural Science Foundation of China (Grant Nos. 61574139 and U1738114), and the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (Grant No. XDA15051200).
Corresponding Authors:  Corresponding author. E-mail: xgyang@semi.ac.cn   

Cite this article: 

Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛) Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots 2021 Chin. Phys. B 30 017802

1 Arsenijevic D and Bimberg D 2016 Proc. SPIE 9892, Semiconductor Lasers and Laser Dynamics VII, 98920S
2 Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
3 Huang H, Duan J, Dong B, Norman J, Jung D, Bowers J E and Grillot F 2020 APL Photonics 5 016103
4 Golovynskyi S, Datsenko O I, Seravalli L, Trevisi G, Frigeri P, Gombia E, Babichuk I S, Lin D Y, Li B K and Qu J L 2020 Semicond. Sci. Tech. 35 055029
5 Guo D, Jiang Q, Tang M, Chen S, Mazur Y I, Maidaniuk Y, Benamara M, Semtsiv M P, Masselink W T, Salamo G J, Liu H and Wu J 2018 Semicond. Sci. Tech. 33 094009
6 Bimberg D 2018 Nanophotonics 7 1245
7 Yang X G, Wang K F, Gu Y X, Ni H Q, Wang X D, Yang T and Wang Z G 2013 Sol. Energ. Mat. Sol. C 113 144
8 Kim Y, Cho I W, Ryu M Y, Kim J O, Lee S J, Ban K Y and Honsberg C B 2017 Appl. Phys. Lett. 111 073103
9 Martì A, Lòpez N, Antolìn E, Cànovas E, Luque A, Stanley C R, Farmer C D and Dìaz P 2007 Appl. Phys. Lett. 90 233510
10 Liu H Y, Steer M J, Badcock T J, Mowbray D J, Skolnick M S, Navaretti P, Groom K M, Hopkinson M and Hogg R A 2005 Appl. Phys. Lett. 86 143108
11 Kim D Y, Hatch S, Wu J, Sablon K A, Lam P, Jurczak P, Tang M C, Gillin W P and Liu H Y 2018 IEEE J. Photovolt. 8 741
12 Liu W S, Wu H M, Tsao F H, Hsu T L and Chyi JI 2012 Sol. Energ. Mat. Sol. C. 105 237
13 Zhou C, Liang, B L, Liu J T, Wang Y, Guo Y N, Wang S F, Fu J S, Mazur Y I, Ware M E and Salamo G J 2019 Opt. Mater. 98 109479
14 Liu W S, Wang Y T, Qiu W Y and Fang C 2013 Appl. Phys. Express 6 085001
15 Chen T T, Cheng C L, Chen Y F, Chang F Y, Lin H H, Wu C T and Chen C H 2007 Phys. Rev. B 75 033310
16 Reyes D F, Ulloa J M, Guzman A, Hierro A, Sales D L, Beanland R, Sanchez A M and Gonzàlez D 2015 Semicond. Sci. Tech. 30 114006
17 Liao Y A, Hsu W T, Chiu P C, Chyi J I and Chang W H 2009 Appl. Phys. Lett. 94 053101
18 Hospodkovà A, Zìkovà M, Pangràc J, Oswald J, Kuldovà K, Vysko\vcil J and Hulicius E 2013 J. Cryst. Growth 370 303
19 Jin C Y, Liu H Y, Zhang S Y, Jiang Q, Liew S L, Hopkinson M, Badcock T J, Nabavi E and Mowbray D J 2007 Appl. Phys. Lett. 91 021102
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[11] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[12] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!