INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance |
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超)†, and Mei-Ling Sun(孙美玲)‡ |
School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China |
|
|
Abstract The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod (NR) array films as the template. Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs, the uniquely etched and W-doped ZnO (EWZ) nanotube (NT) array films with larger surface area, more active sites and better energy band structure were used to improve the photoelectrochemical (PEC) performance and the loading quality of CdS quantum dots (QDs). On the basis of their better surface characteristics, the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection; this effectively improved the light-harvesting ability, charge transportation and separation as well as charge injection efficiency during the PEC reaction. Therefore, all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance. The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA· cm-2, 2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs. The corresponding etching and optimizing mechanisms were also discussed.
|
Received: 28 September 2021
Revised: 06 January 2022
Accepted manuscript online: 19 January 2022
|
PACS:
|
81.07.De
|
(Nanotubes)
|
|
81.07.Ta
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904098 and 11904209), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019QF018), and Higher Education Research and Development Program of Shandong Province, China (Grant No. J18KA242). |
Corresponding Authors:
Guang-Chao Yin, Mei-Ling Sun
E-mail: yingc@sdut.edu.cn;sunml@sdut.edu.cn
|
Cite this article:
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超)†, and Mei-Ling Sun(孙美玲)‡ High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance 2022 Chin. Phys. B 31 098103
|
[1] Saito M and Fujihara S 2008 Energy Environ. Sci. 1 280 [2] Gonzalez-Valls I and Lira-Cantu M 2009 Energy Environ. Sci 2 19 [3] Brammertz G, Buffiere M, Oueslati S, Elanzeery H, Messaoud K B, Sahayaraj S, Köble C, Meuris M and Poortmans J 2013 Appl. Phys. Lett. 103 163904 [4] Wang S, Jia F C, Wang X M, Hu L Q, Sun Y P, Yin G C, Zhou T, Feng Z Y, Kumar P and Liu B 2020 ACS Omega 5 5209 [5] Kim A, Won Y, Woo K, Kim C H and Moon J 2013 ACS Nano 7 1081 [6] Zhao G D, Xuan J Y, Gong Q Q, Wang L L, Ren J J, Sun M L, Jia F C, Yin G C and Liu B 2020 ACS Appl. Mater. Interfaces 12 8573 [7] Shi J, Wang L and Gu Q 2021 Chin. Phys. B 30 026301 [8] Xuan J Y, Zhao G D, Shi X F, Geng W, Li H Z, Sun M L, Jia F C, Tan S G, Yin G C and Liu B 2021 Chin. Phys. B 30 020701 [9] Yang J L, An S J, Park W I and Yi G C 2004 Adv. Mater. 16 1661 [10] Liu J, Wang P, Qu W, Li H, Shi L and Zhang D 2019 Appl. Catal. B-Environmental 257 117880 [11] Xuan J Y, Zhao G D, Gong Q Q, Wang L L, Ren J J, Sun M L, Zhou T, Xing F, Yin G C and Liu B 2021 J. Alloy. Compd. 860 158499 [12] Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H and Domen K 2005 Am. Chem. Soc. 127 8286 [13] Ullah R and Dutta J 2008 J. Hazard. Mater 156 194 [14] Xu T, Zhang L, Cheng H and Zhu Y 2011 Appl. Catal. B-Environmental 101 382 [15] Chen Z, Fang Y, Wang L, Chen X, Lin W and Wang X 2021 Appl. Catal. B-Environmental 296 120369 [16] Zhang Z, Xu L and Qi J 2021 Chin. Phys. B 30 038801 [17] Vivekanandan A K, Huang B R, Kathiravan D, Saravanan A, Prasannan A, Tsai H C and Chen S H 2021 J. Alloy. Compd. 854 157102 [18] Park S M, Bulemo P, Koo W T, Ko J and Kim I D 2021 Sensors Actuators B-Chemical 343 130137 [19] Ding Q W, Zhao Y Z, Rong Z and Xiong Y Y 2008 Chin. Phys. B 17 3875 [20] Mir N, Salavati-Niasari M and Davar F 2021 Chem. Eng. J 181 779 [21] Ganesh I, Sekhar P S C, Padmanabham G and Sundararajan G 2012 Appl. Surf. Sci. 259 524 [22] Xie S, Lu X, Zhai T, Li W, Yu M, Liang C and Tong Y 2012 J. Mater. Chem. 22 14272 [23] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y and Chen K H 2012 Nanoscale 4 6515 [24] Hong M Z, Xiao Y F, Li X C, Ai C Y, Hai B J, Xiao X Y and Mao S C 2014 Chin. Phys. B 23 126102 [25] Wang M, Ren F, Zhou J, Cai G, Cai L, Hu Y, Wang D, Liu Y, Guo L and Shen S N 2015 Sci. Rep. 5 12925 [26] Kumar R, Kumar R, Yadav K P, Vaibhav P, Sharma S, Singh R K and Kumar S 2020 Chin. Phys. B 29 108503 [27] Karmakar K, Sarkar A, Mandal K and Khan G G 2018 ChemElectroChem 5 1147 [28] Zang S, Wang Y, Li M, Su W, An M, Zhang X and Liu Y 2018 Chin. Phys. B 27 018503 [29] Wang G, Yang X, Qian F, Zhang J Z and Li Y 2010 Nano Lett. 10 1088 [30] Cao J T, Liao X J, Wang Y L and Liu Y M 2021 J. Electroanal. Chem. 880 114828 [31] Chen Y, Wang L, Wang W and Cao M 2017 Mater. Chem. Phys. 199 416 [32] Sun M L, Liu X L, Zhao G D, Kong W C, Xuan J Y, Tan S G, Sun Y P, Wei S L, Ren J F and Yin G C 2019 Journal of Power Sources 430 80 [33] Pandi D V, Muthukumarasamy N, Agilan S and Velauthapillai D 2018 Mater. Lett. 223 227 [34] Zheng Z, Xie W, Lim Z S, You L and Wang J 2015 Sci. Rep. 4 5721 [35] Kim S K, Gopi C V V M, Rao S S, Punnoose D and Kim H J 2016 Appl. Surf. Sci. 365 136 [36] Zhang W, Wang W, Shi H, Liang Y, Fu J and Zhu M 2018 Sol. Energy Mater. Sol. Cells 180 25 [37] Mao Y, Cheng Y, Wang J, Yang H, Li M, Chen J, Chao M J, Tong Y X and Liang E 2016 New J. Chem. 40 107 [38] Jayalakshmi G and Saravanan K 2020 J. Mater. Sci. Mater. Electron. 31 5710 [39] Liu Z, Cai Q, Ma C, Zhang J and Liu J 2017 New J. Chem. 41 7947 [40] Kong W, Zhao Y, Xuan J, Gao Z, Wang J, Tan S, Jia Fu, Teng Z, Sun M and Yin G 2021 Appl. Surf. Sci. 537 147998 [41] Ngom B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M and Beye A C 2009 Appl. Surf. Sci. 255 4153 [42] Moafi H F, Zanjanchi M A and Shojaie A F 2013 Mater. Chem. Phys. 139 856 [43] Geng S T, Zhou T, Jia M Y, Shen X Y, Gao P B, Tian S, Zhou P F, Liu B, Zhou J, Zhuo S P and Li F 2021 Energy Environ. Sci. 14 3184 [44] Liu X L, Kong W C, Zhao G D, Xuan J Y, Zhao Y L, Zhou T, Xiu J S, Wang J, Sun M L and Yin G C 2019 Appl. Surf. Sci. 486 28 [45] Yadav R S, Mishra P, Mishra R, Kumar M, Pandey and Avinash C 2010 Ultrason. Sonochem. 17 116 [46] Zhao G D, Sun M L, Liu X L, Xuan J Y, Kong W C, Zhang R N, Sun Y P, Jia F C, Yin G C and Liu B 2019 Electrochim. Acta 304 334 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|