Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037304    DOI: 10.1088/1674-1056/ac92d3

Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure

Cong Wang(王聪) and Xiao-Qi Wang(王晓琦)
Basic Department, Yingkou Institute of Technology, Yingkou 115014, China
Abstract  The thermoelectric effect of the system is theoretically investigated, by coupling Majorana zero mode to the T-typed double-quantum-dot-structure in different ways. It is found that when a single Majorana zero mode is coupled to one of the quantum dots (QDs), the thermoelectric efficiency is suppressed due to the leakage of Majorana zero modes into the QDs. When the Majorana zero mode is coupled to QD2, the suppression of the thermoelectric efficiency is more serious than that of QD1. Furthermore, when two Majorana zero modes are introduced simultaneously, suppression of the thermoelectric effect still takes place. We believe that such results can be candidates for the detection of Majorana bound states and help us understand the role of Majorana zero mode in thermoelectricity.
Keywords:  Majorana bound state      thermoelectricity      quantum dots      figure of merit  
Received:  17 February 2022      Revised:  10 September 2022      Accepted manuscript online:  19 September 2022
PACS:  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  72.10.Bg (General formulation of transport theory)  
Fund: Project supported by High-level talents research project of Yingkou Institute of Technology (Grant No. YJRC202027) and the Natural Science Foundation of Liaoning Province of China (Grant No. 2020-BS-287).
Corresponding Authors:  Xiao-Qi Wang     E-mail:

Cite this article: 

Cong Wang(王聪) and Xiao-Qi Wang(王晓琦) Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure 2023 Chin. Phys. B 32 037304

[1] Harmanp T C, Taylorm J, Walshand P and Laforge B E 2002 Science 297 2229
[2] Zhang Y, Lin G and Chen J 2015 Phys. Rev. E 91 052118
[3] Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H and Molenkamp L W 2015 Nat. Nanotech. 10 854
[4] Zhang Y, Zhang X, Ye Z, Lin G and Chen J 2017 Appl. Phys. Lett. 110 153501
[5] Wang Q, Xie H, Nie Y and Ren W 2013 Phys. Rev. B 87 075102
[6] Juergens S, Haupt F, Moskalets M and Splettstoesser J 2013 Phys. Rev. B 87 245423
[7] Sierra M A, Saiz-Bretín M, Domínguez-Adame F and Sánchez D 2016 Phys. Rev. B 93 235452
[8] Wierzbicki M and Swirkowicz R 2011 Phys. Rev. B 84 075410
[9] Wójcik K P and Weymann I 2016 Phys. Rev. B 93 085428
[10] Tang G, Thingna J and Wang J 2018 Phys. Rev. B 97 155430
[11] Weymann I and Barnaś J 2013 Phys. Rev. B 88 085313
[12] Karwacki L and Trocha P 2016 Phys. Rev. B 94 085418
[13] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[14] Wilczek F 2009 Nat. Phys. 5 614
[15] Stern A 2010 Nature 464 187
[16] Ramos-Andrade J P, Orellana P A and Vernek E 2020 Phys. Rev. B 101 115403
[17] Legg H F, Loss D and Klinovaja J 2021 Phys. Rev. B 104 165405
[18] Manousakis J, Wille C, Altland A, Egger R, Flensberg K and Hassler F 2020 Phys. Rev. Lett. 124 096801
[19] Mao Y and Sun Q 2021 Phys. Rev. B 103 115411
[20] Nichele F, Drachmann A C C, Whiticar A M, et al. 2017 Phys. Rev. Lett. 119 136803
[21] Chiu C and Das Sarma S 2019 Phys. Rev. B 99 035312
[22] Cifuentes J D and Dias da Silva L G G V 2019 Phys. Rev. B 100 085429
[23] Barański J, Barańska M, Zienkiewicz T, Taranko R and Domański T 2021 Phys. Rev. B 103 235416
[24] Wang X Q, Zhang S F, Han Y, Yi G Y and Gong W J 2019 Phys. Rev. B 99 195424
[25] van Dalum G A R, Mitchell A K and Fritz L 2020 Phys. Rev. B 102 041111
[26] Smirnov S 2019 Phys. Rev. B 100 245410
[27] Cronenwett S M, Oosterkamp T H and Kouwenhoven L P 1998 Science 281 540
[28] Harman T C, Taylor P J, Walsh M P and LaForge B E 2002 Science 297 2229
[29] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568
[30] Vernek E, Penteado P H, Seridonio A C and Egues J C 2014 Phys. Rev. B 89 165314
[31] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[32] Xu T T, Gong T, Zhang L L and Gong W J 2022 Physica E 143 115397
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[6] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[7] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[8] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[11] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[12] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[13] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[14] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[15] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
No Suggested Reading articles found!