Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017303    DOI: 10.1088/1674-1056/ac70bf
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential

Yi-Ming Duan(段一名) and Xue-Chao Li(李学超)
School of Mechanics and Optoelectronics Physics, Anhui University of Science and Technology, Huainan 232001, China
Abstract  We investigate the nonlinear optical rectification (NOR) of spherical quantum dots (QDs) under Hulthén plus Hellmann confining potential with the external tuning elements. Energy and wavefunction are determined by using the Nikiforov-Uvarov method. Expression for the NOR coefficient is derived by the density matrix theory. The results show that the applied external elements and internal parameters of this system have a strong influence on intraband nonlinear optical properties. It is hopeful that this tuning of the nonlinear optical properties of GaAs/Ga1-xAlxAs QDs can make a greater contribution to preparation of new functional optical devices.
Keywords:  nonlinear optical rectification      quantum dots      Hulthén plus Hellmann potential      Nikiforov-Uvarov method  
Received:  08 April 2022      Revised:  12 May 2022      Accepted manuscript online:  18 May 2022
PACS:  73.21.La (Quantum dots)  
  96.12.Hg (Magnetic field and magnetism)  
  33.80.-b (Photon interactions with molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51702003, 61775087, 11674312, 52174161, and 12174161).
Corresponding Authors:  Xue-Chao Li     E-mail:  xuechao80@126.com

Cite this article: 

Yi-Ming Duan(段一名) and Xue-Chao Li(李学超) Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential 2023 Chin. Phys. B 32 017303

[1] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2022 Chin. Phys. B 31 044203
[2] Bejan D 2016 Phys. Lett. A 380 3836
[3] Feng Z Y and Yan Z W 2016 Chin. Phys. B 25 107804
[4] Li X C, Wang A M, Wang Z L and Yang Y 2012 Chin. Phys. B 21 087303
[5] Liu C P and Hatsagortsyan K Z 2012 Phys. Rev. A 85 023413
[6] Li X C, Ye C B, Gao J and Wang B 2020 Chin. Phys. B 29 087302
[7] Yu Y B and Guo K X 2003 Physica E 18 492
[8] Sun F L, Li Z H and Wei J H 2020 Chin. Phys. B 29 067302
[9] Qin L G and Wang Q 2017 Chin. Phys. Lett. 34 017303
[10] Duan Y M, Li X C, Chang C, Zhao Z and Zhang L C 2022 Physica B 631 413644
[11] Zhang C J and Liu C P 2020 Laser Phys. Lett. 17 085404
[12] Li J and Zhang D 2015 Chin. Phys. Lett. 32 047303
[13] Pokutnyi S I 2020 Eur. Phys. J. Plus 135 74
[14] Rezaei G, Vaseghi B, Khordad R and Kenary H A 2011 Physica E 43 1853
[15] Yang J Y and Chen H J 2019 Acta Phys. Sin. 68 246302 (in Chinese)
[16] Dapkus P D 1982 Annu. Rev. Mater. Sci. 12 243
[17] Hersee S D and Duchemin J P 1982 Annu. Rev. Mater. Sci. 12 65
[18] Hien N D, Duque C A and Feddi E 2019 Thin Solid Films 682 10
[19] Zhang Z H, Guo K X, Chen B, Wang R Z, Kang M W and Shao S 2010 Superlattices Microstruct. 47 325
[20] Zhang L C, Li X C, Liu X G and Li Z R 2021 Physica B 618 413197
[21] Prasad V and Silotia P 2011 Phys. Lett. A 375 3910
[22] Rezaei G, Vahdani M R K and Vaseghi B 2011 Curr. Appl. Phys. 11 176
[23] Liu G H, Guo K X, Hassanabadi H and Lu L L 2012 Physica B 407 3676
[24] Hou N, Du F Y, Feng R and Wu H S 2021 J. Mol. Liq. 331 115720
[25] Liu K, Xu X, Shan W, Sun D, Yao C and Sun W 2020 Opt. Mater. 99 109569
[26] Tung L V, Lam V T, Hoa L T and Phuc H V 2021 Opt. Quantum Electron. 53 174
[27] Liu X, Zou L, Liu C, Zhang Z H and Yuan J H 2016 Opt. Mater. 53 218
[28] Egrifes H and Sever R 2005 Phys. Lett. A 344 117
[29] Máthé L, Onyenegecha C P, Farcaş A A, Pioraş-Ţimbolmaş L M, Solaimani M and Hassanabadi H 2021 Phys. Lett. A 397 127262
[30] William E S, Inyang E P and Thompson E A 2020 Rev. Mex. Fis. 66 730
[31] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[32] Rezaei G, Vaseghi B, Khordad R and Kenary H A 2011 Physica E 43 1853
[33] Yu Y B, Zhu S N and Guo K X 2005 Phys. Lett. A 335 175
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[6] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[7] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[8] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[15] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
No Suggested Reading articles found!