CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential |
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超)† |
School of Mechanics and Optoelectronics Physics, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract We investigate the nonlinear optical rectification (NOR) of spherical quantum dots (QDs) under Hulthén plus Hellmann confining potential with the external tuning elements. Energy and wavefunction are determined by using the Nikiforov-Uvarov method. Expression for the NOR coefficient is derived by the density matrix theory. The results show that the applied external elements and internal parameters of this system have a strong influence on intraband nonlinear optical properties. It is hopeful that this tuning of the nonlinear optical properties of GaAs/Ga1-xAlxAs QDs can make a greater contribution to preparation of new functional optical devices.
|
Received: 08 April 2022
Revised: 12 May 2022
Accepted manuscript online: 18 May 2022
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
96.12.Hg
|
(Magnetic field and magnetism)
|
|
33.80.-b
|
(Photon interactions with molecules)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51702003, 61775087, 11674312, 52174161, and 12174161). |
Corresponding Authors:
Xue-Chao Li
E-mail: xuechao80@126.com
|
Cite this article:
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超) Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential 2023 Chin. Phys. B 32 017303
|
[1] Noverola-Gamas H, Gaggero-Sager L M and Oubram O 2022 Chin. Phys. B 31 044203 [2] Bejan D 2016 Phys. Lett. A 380 3836 [3] Feng Z Y and Yan Z W 2016 Chin. Phys. B 25 107804 [4] Li X C, Wang A M, Wang Z L and Yang Y 2012 Chin. Phys. B 21 087303 [5] Liu C P and Hatsagortsyan K Z 2012 Phys. Rev. A 85 023413 [6] Li X C, Ye C B, Gao J and Wang B 2020 Chin. Phys. B 29 087302 [7] Yu Y B and Guo K X 2003 Physica E 18 492 [8] Sun F L, Li Z H and Wei J H 2020 Chin. Phys. B 29 067302 [9] Qin L G and Wang Q 2017 Chin. Phys. Lett. 34 017303 [10] Duan Y M, Li X C, Chang C, Zhao Z and Zhang L C 2022 Physica B 631 413644 [11] Zhang C J and Liu C P 2020 Laser Phys. Lett. 17 085404 [12] Li J and Zhang D 2015 Chin. Phys. Lett. 32 047303 [13] Pokutnyi S I 2020 Eur. Phys. J. Plus 135 74 [14] Rezaei G, Vaseghi B, Khordad R and Kenary H A 2011 Physica E 43 1853 [15] Yang J Y and Chen H J 2019 Acta Phys. Sin. 68 246302 (in Chinese) [16] Dapkus P D 1982 Annu. Rev. Mater. Sci. 12 243 [17] Hersee S D and Duchemin J P 1982 Annu. Rev. Mater. Sci. 12 65 [18] Hien N D, Duque C A and Feddi E 2019 Thin Solid Films 682 10 [19] Zhang Z H, Guo K X, Chen B, Wang R Z, Kang M W and Shao S 2010 Superlattices Microstruct. 47 325 [20] Zhang L C, Li X C, Liu X G and Li Z R 2021 Physica B 618 413197 [21] Prasad V and Silotia P 2011 Phys. Lett. A 375 3910 [22] Rezaei G, Vahdani M R K and Vaseghi B 2011 Curr. Appl. Phys. 11 176 [23] Liu G H, Guo K X, Hassanabadi H and Lu L L 2012 Physica B 407 3676 [24] Hou N, Du F Y, Feng R and Wu H S 2021 J. Mol. Liq. 331 115720 [25] Liu K, Xu X, Shan W, Sun D, Yao C and Sun W 2020 Opt. Mater. 99 109569 [26] Tung L V, Lam V T, Hoa L T and Phuc H V 2021 Opt. Quantum Electron. 53 174 [27] Liu X, Zou L, Liu C, Zhang Z H and Yuan J H 2016 Opt. Mater. 53 218 [28] Egrifes H and Sever R 2005 Phys. Lett. A 344 117 [29] Máthé L, Onyenegecha C P, Farcaş A A, Pioraş-Ţimbolmaş L M, Solaimani M and Hassanabadi H 2021 Phys. Lett. A 397 127262 [30] William E S, Inyang E P and Thompson E A 2020 Rev. Mex. Fis. 66 730 [31] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363 [32] Rezaei G, Vaseghi B, Khordad R and Kenary H A 2011 Physica E 43 1853 [33] Yu Y B, Zhu S N and Guo K X 2005 Phys. Lett. A 335 175 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|