|
|
High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots |
Le-Tian Zhu(朱乐天)1, Tao Tu(涂涛)1,2,†, Ao-Lin Guo(郭奥林)1, and Chuan-Feng Li(李传锋)1,2,‡ |
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China; 2 Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230088, China |
|
|
Abstract Single-electron spins in quantum dots are the leading platform for qubits, while magnons in solids are one of the emerging candidates for quantum technologies. How to manipulate a composite system composed of both systems is an outstanding challenge. Here, we use spin-charge hybridization to effectively couple the single-electron spin state in quantum dots to the cavity and further to the magnons. Through this coupling, quantum dots can entangle and detect magnon states. The detection efficiency can reach 0.94 in a realistic experimental situation. We also demonstrate the electrical tunability of the scheme for various parameters. These results pave a practical pathway for applications of composite systems based on quantum dots and magnons.
|
Received: 06 June 2022
Revised: 05 August 2022
Accepted manuscript online: 12 August 2022
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974336) and the National Key Research and Development Program of China (Grant No. 2017YFA0304100). |
Corresponding Authors:
Tao Tu, Chuan-Feng Li
E-mail: tutao@ustc.edu.cn;cfli@ustc.edu.cn
|
Cite this article:
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋) High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots 2022 Chin. Phys. B 31 120302
|
[1] Kurizki G, Bertet P, Kubo Y, Molmer K, Petrosyan D, Rabl P and Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866 [2] Trifunovic L, Pedrocchi F L and Loss D 2013 Phys. Rev. X 3 041023 [3] Neuman T, Wang D S and Narang P 2020 Phys. Rev. Lett. 125 247702 [4] van der Sar T, Casola F, Walsworth R and Yacoby A 2015 Nat. Commun. 6 7886 [5] Du C, van der Sar T, Zhou T X, Upadhyaya P, Casola F, Zhang H, Onbasli M C, Ross C A, Walsworth R L and Tserkovnyak Y and Yacoby A 2017 Science 357 195 [6] Andrich P, Charles F, Liu X, Bretscher H L, Berman J R, Heremans F J, Nealey P F and Awschalom D D 2017 npj Quantum Inf. 3 28 [7] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405 [8] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2016 C. R. Phys. 17 729 [9] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [10] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425 [11] Awschalom D D, Bassett L C, Dzurak A S, Hu E L and Petta J R 2013 Science 339 1174 [12] Kloeffel C and Loss D 2013 Annu. Rev. Condens. Matter Phys. 4 51 [13] Vandersypen L M K, Bluhm H, Clarke J S, Dzurak A S, Ishihara R, Morello A, Reilly D J, Schreiber L R and Veldhorst M 2017 npj Quantum Inf. 3 34 [14] Xue X, et al. 2021 Nature 593 205 [15] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102 [16] Yang C H, Chan K W, Harper R, Huang W, Evans T, Hwang J C C, Hensen B, Laucht A, Tanttu T, Hudson F E, Flammia S T, Itoh K M, Morello A, Bartlett S D and Dzurak A S 2019 Nat. Electron. 2 151 [17] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338 [18] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M K 2022 Nature 601 343 [19] Watson T F, Philips S G J, Kawakami D R, Ward E, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and Vandersypen L M K 2018 Nature 555 633 [20] Nakajima T, Delbecq M R, Otsuka T, Stano P, Amaha S, Yoneda J, Noiri A, Kawasaki K, Takeda K, Allison G, Ludwig A, Wieck A D, Loss D and Tarucha S 2017 Phys. Rev. Lett. 119 017701 [21] Takeda K, Noiri A, Yoneda J, Nakajima T and Tarucha S 2020 Phys. Rev. Lett. 124 117701 [22] Gundogan M, Ledingham P M, Kutluer K, Mazzera M and de Riedmatten H 2015 Phys. Rev. Lett. 114 230501 [23] Jobez P, Usmani I, Timoney N, Laplane C, Gisin N and Afzelius M 2014 New J. Phys. 16 083005 [24] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599 [25] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501 [26] Wang L, Tu T, Gong B and Guo G C 2015 Phys. Rev. A 92 062346 [27] Zhu X. Y, Tu T, Guo A L, Zhou Z Q and Guo G C 2020 Chin. Phys. Lett. 37 020302 [28] Zhou B B, Baksic A, Ribeiro H, Yale C G, Heremans F J, Jerger P C, Auer A, Burkard G, Clerk A A and Awschalom D D 2017 Nat. Phys. 13 330 [29] Guo A L, Tu T, Guo G C and Li C F 2021 Phys. Rev. A 104 022404 [30] Gong B, Tu T, Guo A L, Zhu L T and Li C F 2021 Chin. Phys. Lett. 38 044201 [31] Kono S, Koshino K, Tabuchi Y, Noguchi A and Nakamura Y 2018 Nat. Phys. 14 546 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|