Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048704    DOI: 10.1088/1674-1056/ac8348
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots

Peng Du(杜鹏)1, Yining Mu(母一宁)1,†, Hang Ren(任航)1, Idelfonso Tafur Monroy2,‡, Yan-Zheng Li(李彦正)1, Hai-Bo Fan(樊海波)3,4,§, Shuai Wang(王帅)1, Makram Ibrahim5,¶, and Dong Liang(梁栋)1
1 School of Physics, Changchun University of Science and Technology, Changchun 130022, China;
2 Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands;
3 Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710018, China;
4 Kunming Institute of Physics, Kunming 650221, China;
5 Solar and Space Research Department, National Research Institute of Astronomy and Geophysics(NRIAG), Cairo 11421, Egypt
Abstract  This research argues that using an electron beam with high kinetic energy to pump perovskite quantum dots can significantly boost the efficiency of the low-frequency photon radiation conversion. Firstly, we measure the random lasing threshold and luminescence threshold of CsPbX3 films pumped by an electron beam. Then, we simulate the spatial distribution of the electron beams in CsPbX3 films. Combined with the above data, a low-frequency photon radiation conversion model based on the electron pumped perovskite quantum dots is presented. This could be a way to create a terahertz source with a high-power output or to multiply the terahertz power.
Keywords:  electron beam      perovskite quantum dots      THz  
Received:  22 March 2022      Revised:  19 July 2022      Accepted manuscript online:  22 July 2022
PACS:  87.50.U-  
  73.21.La (Quantum dots)  
Fund: This work is funded by the National Natural Science Foundation of China (Grant Nos. 61905026, 61703057, 11874091, and 61905023), the National Key Research and Development Program of China (Grant No. 2018YFB1800303), Construction Project of Key Laboratory of Astronomical Optics Technology of Chinese Academy of Sciences (Grant No. CAS-KLAOTKF201803), Chongqing Natural Science Foundation of China (Grant No. CSTC2021JCYJMSXMX0500), and Foundation Project of Jilin Province, China (Grant Nos. 20210402067GH, JJKH20210830KJ, JJKH20210800KJ, 20200301065RQ, 20190201188JC, and 2019C043-6).
Corresponding Authors:  Yining Mu, Idelfonso Tafur Monroy, Hai-Bo Fan, Makram Ibrahim     E-mail:  muyining1985@hotmail.com;i.tafur.monroy@tue.nl;fanhaibo1995@163.com;makram@nriag.sci.eg

Cite this article: 

Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋) Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots 2023 Chin. Phys. B 32 048704

[1] Minamide H 2015 IEEE T. THz Sci. Techn. 5 1104
[2] Lee A J, Spence D J and Pask H M 2020 Prog. Quant. Electronics 7 100254
[3] Hubers H W, Richter H, Eichholz R, Wienold M, Biermann K and Schrottke L 2017 IEEE J. Sel. Top Quant. 23 1
[4] Chen S Q, Xie Z Q, Liu J M, He Y L, Cai Y, Zhang X K, Xiao J N, Li Y and Fan D Y 2017 Adv. Cond. Matter Phys. 7 1
[5] Yang S H, Watts R, Li X, Wang N, Cojocaru V and Gorman J O 2015 Opt. Express 23 31206
[6] Ironside D J, Salas R, Chen P Y, Le K Q and Bank S R 2019 Opt. Express 27 9481
[7] Raab J, Mezzapesa F P, Viti L, Dessmann N and Vitiello M S 2020 Nat. Commun. 11 4290
[8] Dai J, Ruan C J, Ding Y and Yan Z 2020 Opt. Express 29 409879
[9] Alibakhshikenari M, Virdee B S, Khalily M, Chan H S and Limiti E 2020 IEEE Antenn. Wirel. Pr. 19 1576
[10] Dukhopelnykov S V, Lucido M, Sauleau R and Nosich A L 2021 IEEE J. Sel. Top Quant. 27 1
[11] Belkin M A and Capasso F 2015 Phys. Scr. 90 118002
[12] Yardimci N T, Cakmakyapan S, Hemmati S and Jarrahi M 2017 Sci. Rep-Uk. 7 4166
[13] Fujita K, Hayashi S, Ito A, Hitaka M and Dougakiuchi T 2019 Nanophotonics 8 2235
[14] Lin S S, Lin H, Chen G X, Wang B, Yue X M, Huang Q G, Xu J, Cheng Y and Wang Y S 2021 Laser Photonics Rev. 15 2100044
[15] Yan D D, Shi T C, Zang Z G, Zhao S Y, Du J and Leng Y X 2020 Chem. Eng. J. 401 126066
[16] Mo Q H, Chen C, Cai W S, Zhao S Y, Yan D D and Zang Z G 2021 Laser Photonics Rev. 15 2100278
[17] Lan S G, Peng Y Y, Shen H Z, Wang S, Ren J W, Zheng Z P, Liu W W and Li D H 2021 Laser Photonics Rev. 15 2000428
[18] Hang H Y, Su R, Huang Y Y, Zhou Y X, Zhao Q Y, Khurgin J B, Xiong Q H and Xu X L 2019 Adv. Funct. Mater. 29 1904694
[19] Wang Y, Li X, Zhao X, Xiao L, Zeng H and Sun H 2015 Nano Lett. 16 448
[20] Fu Y, Zhu H, Stoumpos C C, Ding Q, Wang J and Kanatzidis M G 2016 ACS Nano 10 7963
[21] Ren Y, Wang W, Wang Z, Xia S and Wang Y 2020 J. Phys. Chem. C 124 8341
[22] Park Y, Ying G, Jana A, Osokin V and Kim K S 2014 Nano Res. 14 108
[23] Mu Y, Zhang T, Chen T, Tang F and Li P 2019 Nano 15 2050016
[24] Hu Z, Li C, Tang X, Leng Y, Sun K and Zang Z 2017 Nano Energy 40 195
[25] Qaid S M H, Alharbi F H, Bedja I, Nazeeruddin M K and Aldwayyan A S. 2020 Nanomaterials 10 1605
[26] Wu Z, Chen J, Mi Y, Sui X, Zhang S, Du W, Wang R, Shi J, Wu X, Qiu X, Qin Z, Zhang Q and Liu X 2018 Adv. Opt. Mater. 6 1800674
[27] Kim J, Manh N T, Thai H T, Jeong S K, Lee Y W, Cho Y, Ahn W, Choi Y and Cho N 2022 Nanomaterials 12 920
[28] Dong T W and Xun H 2012 Acta Phys. Sin. 61 187901 (in Chinese)
[29] Romanov R, Fominski V, Demin M, Fominski D, Rubinkovskaya O, Novikov S, Volkov V and Doroshina N 2021 Nanomaterials 11 1461
[30] Ren H, Mu Y N, Du P, Li Y Z, Fan H B, Wang S, Idelfonso T M, Ibrahim M 2022 Acta Opt. Sin. 42 1927001
[31] Fan H B, Mu Y N, Liu C Y, Zhu Y, Liu G Z, Wang S, Li Y Z and Du P 2020 Chin. Opt. Lett. 18 011403
[32] Dolgov A K, Ushakov D V, Afonenko A A, Dyuzhikov I N, Glinskiy I A and Ponomarev D S 2021 Quantum Electronic 51 164
[33] Bao Z, Wang W, Tsai H Y, Wang H C, Chen S and Liu R S 2020 J. Mater. Chem. C 8 1065
[34] Demers H, Poirier-Demers N, Jonge N D and Drouin D 2011 Scanning 17 612
[35] Hussain M, Rashid M, Saeed F and Bhatti A S 2021 J. Mater. Sci. 56 528
[36] Korolev V I, Pushkarev A P, Obraztsov P A, Tsypkin A N and Makarov S V 2019 Nanophotonics 9 187
[37] Chen J, Wu K, Hu W and Yang J 2021 J. Phys. Chem. Lett. 12 1932
[38] Cinquanta E, Meggiolaro D, Motti S G, Gandini M, Alcocer M and Akkerman Q A 2019 Phys. Rev. Lett. 122 166601
[1] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[2] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[3] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[4] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[5] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[6] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[7] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[8] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[9] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[10] Fe-doped ZnS film fabricated by electron beam evaporation and its application as saturable absorber for Er:ZBLAN fiber laser
Jiu-Lin Yang(杨久林), Guo-Ying Feng(冯国英), Du-Xin Qing(卿杜鑫), Ya-Jie Wu(吴雅婕), Yun Luo(罗韵), and Jian-Jun Wang(王建军). Chin. Phys. B, 2021, 30(7): 074207.
[11] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[12] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[13] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[14] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[15] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
No Suggested Reading articles found!