INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots |
Peng Du(杜鹏)1, Yining Mu(母一宁)1,†, Hang Ren(任航)1, Idelfonso Tafur Monroy2,‡, Yan-Zheng Li(李彦正)1, Hai-Bo Fan(樊海波)3,4,§, Shuai Wang(王帅)1, Makram Ibrahim5,¶, and Dong Liang(梁栋)1 |
1 School of Physics, Changchun University of Science and Technology, Changchun 130022, China; 2 Institute for Photonic Integration, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands; 3 Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710018, China; 4 Kunming Institute of Physics, Kunming 650221, China; 5 Solar and Space Research Department, National Research Institute of Astronomy and Geophysics(NRIAG), Cairo 11421, Egypt |
|
|
Abstract This research argues that using an electron beam with high kinetic energy to pump perovskite quantum dots can significantly boost the efficiency of the low-frequency photon radiation conversion. Firstly, we measure the random lasing threshold and luminescence threshold of CsPbX3 films pumped by an electron beam. Then, we simulate the spatial distribution of the electron beams in CsPbX3 films. Combined with the above data, a low-frequency photon radiation conversion model based on the electron pumped perovskite quantum dots is presented. This could be a way to create a terahertz source with a high-power output or to multiply the terahertz power.
|
Received: 22 March 2022
Revised: 19 July 2022
Accepted manuscript online: 22 July 2022
|
|
Fund: This work is funded by the National Natural Science Foundation of China (Grant Nos. 61905026, 61703057, 11874091, and 61905023), the National Key Research and Development Program of China (Grant No. 2018YFB1800303), Construction Project of Key Laboratory of Astronomical Optics Technology of Chinese Academy of Sciences (Grant No. CAS-KLAOTKF201803), Chongqing Natural Science Foundation of China (Grant No. CSTC2021JCYJMSXMX0500), and Foundation Project of Jilin Province, China (Grant Nos. 20210402067GH, JJKH20210830KJ, JJKH20210800KJ, 20200301065RQ, 20190201188JC, and 2019C043-6). |
Corresponding Authors:
Yining Mu, Idelfonso Tafur Monroy, Hai-Bo Fan, Makram Ibrahim
E-mail: muyining1985@hotmail.com;i.tafur.monroy@tue.nl;fanhaibo1995@163.com;makram@nriag.sci.eg
|
Cite this article:
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋) Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots 2023 Chin. Phys. B 32 048704
|
[1] Minamide H 2015 IEEE T. THz Sci. Techn. 5 1104 [2] Lee A J, Spence D J and Pask H M 2020 Prog. Quant. Electronics 7 100254 [3] Hubers H W, Richter H, Eichholz R, Wienold M, Biermann K and Schrottke L 2017 IEEE J. Sel. Top Quant. 23 1 [4] Chen S Q, Xie Z Q, Liu J M, He Y L, Cai Y, Zhang X K, Xiao J N, Li Y and Fan D Y 2017 Adv. Cond. Matter Phys. 7 1 [5] Yang S H, Watts R, Li X, Wang N, Cojocaru V and Gorman J O 2015 Opt. Express 23 31206 [6] Ironside D J, Salas R, Chen P Y, Le K Q and Bank S R 2019 Opt. Express 27 9481 [7] Raab J, Mezzapesa F P, Viti L, Dessmann N and Vitiello M S 2020 Nat. Commun. 11 4290 [8] Dai J, Ruan C J, Ding Y and Yan Z 2020 Opt. Express 29 409879 [9] Alibakhshikenari M, Virdee B S, Khalily M, Chan H S and Limiti E 2020 IEEE Antenn. Wirel. Pr. 19 1576 [10] Dukhopelnykov S V, Lucido M, Sauleau R and Nosich A L 2021 IEEE J. Sel. Top Quant. 27 1 [11] Belkin M A and Capasso F 2015 Phys. Scr. 90 118002 [12] Yardimci N T, Cakmakyapan S, Hemmati S and Jarrahi M 2017 Sci. Rep-Uk. 7 4166 [13] Fujita K, Hayashi S, Ito A, Hitaka M and Dougakiuchi T 2019 Nanophotonics 8 2235 [14] Lin S S, Lin H, Chen G X, Wang B, Yue X M, Huang Q G, Xu J, Cheng Y and Wang Y S 2021 Laser Photonics Rev. 15 2100044 [15] Yan D D, Shi T C, Zang Z G, Zhao S Y, Du J and Leng Y X 2020 Chem. Eng. J. 401 126066 [16] Mo Q H, Chen C, Cai W S, Zhao S Y, Yan D D and Zang Z G 2021 Laser Photonics Rev. 15 2100278 [17] Lan S G, Peng Y Y, Shen H Z, Wang S, Ren J W, Zheng Z P, Liu W W and Li D H 2021 Laser Photonics Rev. 15 2000428 [18] Hang H Y, Su R, Huang Y Y, Zhou Y X, Zhao Q Y, Khurgin J B, Xiong Q H and Xu X L 2019 Adv. Funct. Mater. 29 1904694 [19] Wang Y, Li X, Zhao X, Xiao L, Zeng H and Sun H 2015 Nano Lett. 16 448 [20] Fu Y, Zhu H, Stoumpos C C, Ding Q, Wang J and Kanatzidis M G 2016 ACS Nano 10 7963 [21] Ren Y, Wang W, Wang Z, Xia S and Wang Y 2020 J. Phys. Chem. C 124 8341 [22] Park Y, Ying G, Jana A, Osokin V and Kim K S 2014 Nano Res. 14 108 [23] Mu Y, Zhang T, Chen T, Tang F and Li P 2019 Nano 15 2050016 [24] Hu Z, Li C, Tang X, Leng Y, Sun K and Zang Z 2017 Nano Energy 40 195 [25] Qaid S M H, Alharbi F H, Bedja I, Nazeeruddin M K and Aldwayyan A S. 2020 Nanomaterials 10 1605 [26] Wu Z, Chen J, Mi Y, Sui X, Zhang S, Du W, Wang R, Shi J, Wu X, Qiu X, Qin Z, Zhang Q and Liu X 2018 Adv. Opt. Mater. 6 1800674 [27] Kim J, Manh N T, Thai H T, Jeong S K, Lee Y W, Cho Y, Ahn W, Choi Y and Cho N 2022 Nanomaterials 12 920 [28] Dong T W and Xun H 2012 Acta Phys. Sin. 61 187901 (in Chinese) [29] Romanov R, Fominski V, Demin M, Fominski D, Rubinkovskaya O, Novikov S, Volkov V and Doroshina N 2021 Nanomaterials 11 1461 [30] Ren H, Mu Y N, Du P, Li Y Z, Fan H B, Wang S, Idelfonso T M, Ibrahim M 2022 Acta Opt. Sin. 42 1927001 [31] Fan H B, Mu Y N, Liu C Y, Zhu Y, Liu G Z, Wang S, Li Y Z and Du P 2020 Chin. Opt. Lett. 18 011403 [32] Dolgov A K, Ushakov D V, Afonenko A A, Dyuzhikov I N, Glinskiy I A and Ponomarev D S 2021 Quantum Electronic 51 164 [33] Bao Z, Wang W, Tsai H Y, Wang H C, Chen S and Liu R S 2020 J. Mater. Chem. C 8 1065 [34] Demers H, Poirier-Demers N, Jonge N D and Drouin D 2011 Scanning 17 612 [35] Hussain M, Rashid M, Saeed F and Bhatti A S 2021 J. Mater. Sci. 56 528 [36] Korolev V I, Pushkarev A P, Obraztsov P A, Tsypkin A N and Makarov S V 2019 Nanophotonics 9 187 [37] Chen J, Wu K, Hu W and Yang J 2021 J. Phys. Chem. Lett. 12 1932 [38] Cinquanta E, Meggiolaro D, Motti S G, Gandini M, Alcocer M and Akkerman Q A 2019 Phys. Rev. Lett. 122 166601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|