Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 018507    DOI: 10.1088/1674-1056/aca7e8
Special Issue: SPECIAL TOPIC — Physics in micro-LED and quantum dots devices
TOPICAL REVIEW—Physics in micro-LED and quantum dots devices Prev   Next  

Ion migration in metal halide perovskite QLEDs and its inhibition

Yuhui Dong(董宇辉)1,2, Danni Yan(严丹妮)1,2, Shuai Yang(杨帅)1,2, Naiwei Wei(魏乃炜)1,2, Yousheng Zou(邹友生)1,2,†, and Haibo Zeng(曾海波)1,2‡
1 Institute of Optoelectronics&Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Nanjing 210094, China
Abstract  Benefiting from the excellent properties such as high photoluminescence quantum yield (PLQY), wide gamut range, and narrow emission linewidth, as well as low-temperature processability, metal halide perovskite quantum dots (QDs) have attracted wide attention from researchers. Despite tremendous progress has been made during the past several years, the commercialization of perovskite QDs-based LEDs (PeQLEDs) is still plagued by the instability. The ion migration in halide perovskites is recognized as the key factor causing the performance degradation of PeQLEDs. In this review, the elements species of ion migration, the effects of ion migration on device performance and stability, and effective strategies to hinder/mitigate ion migration in PeQLEDs are successively discussed. Finally, the forward insights on the future research are highlighted.
Keywords:  perovskite quantum dots      light-emitting diodes      ion migration      stability  
Received:  31 August 2022      Revised:  16 November 2022      Accepted manuscript online:  02 December 2022
PACS:  85.60.Jb (Light-emitting devices)  
  61.82.Rx (Nanocrystalline materials)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
Fund: This work was supported by the Natural Natural Science Foundation of China (Grant Nos. 61904081 and 51672132), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190449), and the Postdoctoral Research Funding Program of Jiangsu Province, China (Grant No. 2020Z144).
Corresponding Authors:  Yousheng Zou, Haibo Zeng     E-mail:;

Cite this article: 

Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波) Ion migration in metal halide perovskite QLEDs and its inhibition 2023 Chin. Phys. B 32 018507

[1] Ren X, Zhang X, Xie H, Cai J, Wang C, Chen E, Xu S, Ye Y, Sun J, Yan Q and Guo T 2022 Nanomaterials 12 2243
[2] Li J, Xu L, Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B and Zeng H 2017 Adv. Mater. 29 1603885
[3] Pan J, Shang Y, Yin J, De Bastiani M, Peng W, Dursun I, Sinatra L, El-Zohry A M, Hedhili M N, Emwas A H, Mohammed O F, Ning Z and Bakr O M 2018 J. Am. Chem. Soc. 140 562
[4] Nenon D P, Pressler K, Kang J, Koscher B A, Olshansky J H, Osowiecki W T, Koc M A, Wang L W and Alivisatos A P 2018 J. Am. Chem. Soc. 140 17760
[5] Fang T, Wang T, Li X, Dong Y, Bai S and Song J 2021 Sci. Bull. 66 36
[6] De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V and Hens Z 2016 ACS Nano 10 2071
[7] Chen K, Jin W, Zhang Y, Yang T, Reiss P, Zhong Q, Bach U, Li Q, Wang Y, Zhang H, Bao Q and Liu Y 2020 J. Am. Chem. Soc. 142 3775
[8] Chen J, Jia D, Johansson E M J, Hagfeldt A and Zhang X 2021 Energy Environ. Sci. 14 224
[9] Wang Y, Li X, Zhao X, Xiao L, Zeng H and Sun H 2016 Nano Lett. 16 448
[10] Huang C Y, Zou C, Mao C, Corp K L, Yao Y C, Lee Y J, Schlenker C W, Jen A K Y and Lin L Y 2017 ACS Photonics 4 2281
[11] Song J, Li J, Li X, Xu L, Dong Y and Zeng H 2015 Adv. Mater. 27 7162
[12] Wang H C, Wang W, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S and Liu R S 2017 Angew. Chem. Int. Ed. 56 13650
[13] Zhang B B, Yuan S, Ma J P, Zhou Y, Hou J, Chen X, Zheng W, Shen H, Wang X C, Sun B, Bakr O M, Liao L S and Sun H T 2019 J. Am. Chem. Soc. 141 15423
[14] Dong Y, Tang X, Zhang Z, Song J, Niu T, Shan D and Zeng H 2020 Matter 3 273
[15] Yang Z, Dong Y, Zong S, Li L, Yang K, Wang Z, Zeng H and Cui Y 2022 Nanoscale 14 6392
[16] Mei X, Jia D, Chen J, Zheng S and Zhang X 2022 Nano Today 43 101449
[17] Dong Y, Wang Y K and Yuan F 2020 Nat. Nanotechnol. 15 668
[18] Kim Y H, Kim S and Kakekhani A 2021 Nat. Photon. 15 148
[19] Wang Y K, Yuan F and Dong Y 2021 Angew. Chem. Int. Ed. 60 16164
[20] Shen Y, Li Y Q, Zhang K, Zhang L J, Xie F M, Chen L, Cai X Y, Lu Y, Ren H, Gao X, Xie H, Mao H, Kera S and Tang J X 2022 Adv. Funct. Mater. 32 2206574
[21] Liu Z, Qiu W, Peng X, Sun G, Liu X, Liu D, Li Z, He F, Shen C, Gu Q, Ma F, Yip H L, Hou L, Qi Z and Su S J 2021 Adv. Mater. 33 e2103268
[22] Ye F, Shan Q, Zeng H and Choy W 2021 ACS Energy Lett. 6 3114
[23] Liu Y, Dong Y and Zhu T 2021 J. Am. Chem. Soc. 143 15606
[24] Guo B, Lai R, Jiang S, Zhou L, Ren Z, Lian Y, Li P, Cao X, Xing S, Wang Y, Li W, Zou C, Chen M, Hong Z, Li C, Zhao B and Di D 2022 Nat. Photon. 16 637
[25] Won Y H, Cho O, Kim T, Chung D Y, Kim T, Chung H, Jang H, Lee J, Kim D and Jang E 2019 Nature 575 634
[26] Li N, Jia Y, Guo Y and Zhao N 2022 Adv. Mater. 34 e2108102
[27] Dong Q, Mendes J, Lei L, Seyitliyev D, Zhu L, He S, Gundogdu K and So F 2020 ACS Appl. Mater. Interfaces 12 48845
[28] Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow E K, Sum T C and Huang W 2017 Nat. Commun. 8 14558
[29] Yuan Y and Huang J 2016 Acc. Chem. Res. 49 286
[30] Dong Q, Lei L, Mendes J and So F 2020 J. Phys.: Mater. 3 012002
[31] Wang H C, Bao Z, Tsai H Y, Tang A C and Liu R S 2018 Small 14 1702433
[32] Xie M and Tian J 2022 J. Phys. Chem. Lett. 13 1962
[33] Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A and Islam M S 2015 Nat. Commun. 6 7497
[34] Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D'Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D and Boyen H G 2015 Adv. Energy Mater. 5 1500477
[35] Zhang H, Fu X, Tang Y, Wang H, Zhang C, Yu W W, Wang X, Zhang Y and Xiao M 2019 Nat. Commun. 10 1088
[36] Cho H, Kim Y H, Wolf C, Lee H D and Lee T W 2018 Adv. Mater. 30 e1704587
[37] Barker A J, Sadhanala A, Deschler F, Gandini M, Senanayak S P, Pearce P M, Mosconi E, Pearson A J, Wu Y, Kandada A R S, Leijtens T, Angelis F D, Dutton S E, Petrozza A and Friend R H 2017 ACS Energy Lett. 2 1416
[38] ten Brinck S, Zaccaria F and Infante I 2019 ACS Energy Lett. 4 2739
[39] Meggiolaro D, Mosconi E and De Angelis F 2019 ACS Energy Lett. 4 779
[40] Kim Y H, Wolf C, Kim H and Lee T W 2018 Nano Energy 52 329
[41] Kamat P V and Kuno M 2021 Acc. Chem. Res. 54 520
[42] Vashishtha P and Halpert J E 2017 Chem. Mater. 29 5965
[43] Wen Z, Xie F and Choy W C H 2021 Nano Select 3 505
[44] Yuan Y, Wang Q, Shao Y, Lu H, Li T, Gruverman A and Huang J 2016 Adv. Energy Mater. 6 1501803
[45] Prakasam V, Tordera D, Bolink H J and Gelinck G 2019 Adv. Opt. Mater. 7 1900902
[46] Geng S, Wen Y, Zhou B, Wang Z, Wang Z, Wang P, Jing Y, Cao K, Wang K and Chen R 2021 ACS Appl. Electron. Mater. 3 2362
[47] Zhao L, Gao J, Lin Y L, Yeh Y W, Lee K M, Yao N, Loo Y L and Rand B P 2017 Adv. Mater. 29 1605317
[48] Cheng T, Tumen-Ulzii G, Klotz D, Watanabe S, Matsushima T and Adachi C 2020 ACS Appl. Mater. Interfaces 12 33004
[49] Kim H, Kim J S, Heo J M 2020 Nat. Commun. 11 3378
[50] Feng Y, Zhao Y, Zhou W K, Li Q, Saidi W A, Zhao Q and Li X Z 2018 J. Phys. Chem. Lett. 9 6536
[51] Cardenas-Daw C, Simon T, Stolarczyk J K and Feldmann J 2017 J. Am. Chem. Soc. 139 16462
[52] Shi Y, Wu W, Dong H, Li G, Xi K, Divitini G, Ran C, Yuan F, Zhang M, Jiao B, Hou X and Wu Z 2018 Adv. Mater. 30 e1800251
[56] Knight A J and Herz L M 2020 Energy Environ. Sci. 13 2024
[57] Shynkarenko Y, Bodnarchuk M I, Bernasconi C, Berezovska Y, Verteletskyi V, Ochsenbein S T and Kovalenko M V 2019 ACS Energy Lett. 4 2703
[53] Zhang S, Liu H, Li X and Wang S 2020 Nano Energy 77 105302
[54] Li H, Dong W, Shen X, Ge C, Song Y, Wang Z, Wang A, Yang Z, Hao M, Zhang Y, Zheng W, Zhang X and Dong Q 2022 J. Phys. Chem. C 126 1085
[55] Zhang X, Lu M, Zhang Y, Wu H, Shen X, Zhang W, Zheng W, Colvin V L and Yu W W 2018 ACS Cent. Sci. 4 1352
[58] Xu B, Wang W, Zhang X, Liu H, Zhang Y, Mei G, Chen S, Wang K, Wang L and Sun X W 2018 Sci. Rep. 8 15799
[59] Lee H, Ko D and Lee C 2019 ACS Appl Mater Interfaces 11 11667
[60] Bi E, Chen H, Xie F, Wu Y, Chen W, Su Y, Islam A, Gratzel M, Yang X and Han L 2017 Nat. Commun. 8 15330
[61] Kim Y H, Kim J S and Lee T W 2019 Adv. Mater. 31 e1804595
[62] Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A and Huang J 2015 Adv. Energy Mater. 5 1500615
[63] Li J, Shan X, Bade S G R, Geske T, Jiang Q, Yang X and Yu Z 2016 J. Phys. Chem. Lett. 7 4059
[64] Futscher M H, Gangishetty M K, Congreve D N and Ehrler B 2020 ACS Appl. Electron. Mater. 2 1522
[65] Yao J S, Ge J, Han B N, Wang K H, Yao H B, Yu H L, Li J H, Zhu B S, Song J Z, Chen C, Zhang Q, Zeng H B, Luo Y and Yu S H 2018 J. Am. Chem. Soc. 140 3626
[66] Zhang J, Zhang L, Cai P, Xue X, Wang M, Zhang J and Tu G 2019 Nano Energy 62 434
[67] Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M and Chen X 2017 J. Am. Chem. Soc. 139 11443
[68] Tan S, Yavuz I, De Marco N, Huang T, Lee S J, Choi C S, Wang M, Nuryyeva S, Wang R, Zhao Y, Wang H C, Han T H, Dunn B, Huang Y, Lee J W and Yang Y 2020 Adv. Mater. 32 e1906995
[69] Song J, Fang T, Li J, Xu L, Zhang F, Han B, Shan Q and Zeng H 2018 Adv. Mater. 30 e1805409
[70] Ye F, Zhang H, Wang P, Cai J, Wang L, Liu D and Wang T 2020 Chem. Mater. 32 3211
[71] Zheng X, Yuan S and Liu J 2020 ACS Energy Lett. 5 793
[72] Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J and Yao H B 2020 J. Am. Chem. Soc. 142 2956
[73] Baek S, Kang S, Son C, Shin S J, Kim J H, Park J and Kim S W 2020 Adv. Opt. Mater. 8 1901897
[74] Kim Y C, An H J, Kim D H, Myoung J M, Heo Y J and Cho J H 2020 Adv. Funct. Mater. 31 2005553
[75] Hassan Y, Park J H, Crawford M L, Sadhanala A, Lee J, Sadighian J C, Mosconi E, Shivanna R, Radicchi E, Jeong M, Yang C, Choi H, Park S H, Song M H, De Angelis F, Wong C Y, Friend R H, Lee B R and Snaith H J 2021 Nature 591 72
[76] Bi C, Yao Z, Sun X, Wei X, Wang J and Tian J 2021 Adv. Mater. 33 e2006722
[77] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H and Stranks S D 2018 Nature 555 497
[78] Zhang L, Yuan F, Xi J, Jiao B, Dong H, Li J and Wu Z 2020 Adv. Funct. Mater. 30 2001834
[79] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R H 2014 Nat. Nanotechnol. 9 687
[80] Zhao B, Bai S and Kim V 2018 Nat. Photon. 12 783
[81] Cho H, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S and Lee T W 2017 Adv. Mater. 29 1700579
[82] Ravi V K, Scheidt R A, Nag A, Kuno M and Kamat P V 2018 ACS Energy Lett. 3 1049
[83] Zhang X, Yin W, Zheng W and Rogach A L 2020 ACS Energy Lett. 5 2927
[84] Han B, Yuan S, Cai B, Song J, Liu W, Zhang F, Fang T, Wei C and Zeng H 2021 Adv. Funct. Mater. 31 2011003
[85] Li H, Lin H, Ouyang D, Yao C, Li C, Sun J, Song Y, Wang Y, Yan Y, Wang Y, Dong Q and Choy W C H 2021 Adv. Mater. 33 e2008820
[86] Tsai H, Shrestha S, Vilá R A, Huang W, Liu C, Hou C H, Huang H H, Wen X, Li M, Wiederrecht G, Cui Y, Cotlet M, Zhang X, Ma X and Nie W 2021 Nat. Photon. 15 843
[87] Xue X, Li M, Liu Z, Wang C, Xu J, Wang S, Zhang H, Zhong H and Ji W 2022 Fundamental Research
[88] Lee S, Park J H, Lee B R, Jung E D, Yu J C, Di Nuzzo D, Friend R H and Song M H 2017 J. Phys. Chem. Lett. 8 1784
[89] Ma D, Todorovic P and Meshkat S 2020 J. Am. Chem. Soc. 142 5126
[90] Han B, Yuan S, Fang T, Zhang F, Shi Z and Song J 2020 ACS Appl. Mater. Interfaces 12 14224
[91] Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X and You J 2021 Adv. Mater. 33 e2007169
[92] Guo Y, Apergi S, Li N, Chen M, Yin C, Yuan Z, Gao F, Xie F, Brocks G, Tao S and Zhao N 2021 Nat. Commun. 12 644
[93] Chen M, Shan X, Geske T, Li J and Yu Z 2017 ACS Nano 11 6312
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[10] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[13] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
No Suggested Reading articles found!