Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097305    DOI: 10.1088/1674-1056/ac6b1e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic transport characteristics of side-coupled double-quantum-impurity systems

Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华)
Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  A systematic study is performed on time-dependent dynamic transport characteristics of a side-coupled double-quantum-impurity system based on the hierarchical equations of motion. It is found that the transport current behaves like a single quantum dot when the coupling strength is low during tunneling or Coulomb coupling. For the case of only tunneling transition, the dynamic current oscillates due to the temporal coherence of the electron tunneling device. The oscillation frequency of the transport current is related to the step voltage applied by the lead, while temperature $T$, electron--electron interaction $U$ and the bandwidth $W$ have little influence. The amplitude of the current oscillation exists in positive correlation with $W$ and negative correlation with $U$. With the increase in coupling $t_{12}$ between impurities, the ground state of the system changes from a Kondo singlet of one impurity to a spin singlet of two impurities. Moreover, lowering the temperature could promote the Kondo effect to intensify the oscillation of the dynamic current. When only the Coulomb transition is coupled, it is found that the two split-off Hubbard peaks move upward and have different interference effects on the Kondo peak at the Fermi surface with the increase in $U_{12}$, from the dynamics point of view.
Keywords:  quantum dots      tunneling transition      capacitive type  
Received:  22 December 2021      Revised:  21 April 2022      Accepted manuscript online:  28 April 2022
PACS:  73.63.Kv (Quantum dots)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774418 and 11374363). Computational resources were provided by the Physical Laboratory of High Performance Computing at Renmin University of China.
Corresponding Authors:  Jian-Hua Wei     E-mail:  wjh@ruc.edu.cn

Cite this article: 

Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华) Dynamic transport characteristics of side-coupled double-quantum-impurity systems 2022 Chin. Phys. B 31 097305

[1] Zhao Z Y, Min Y and Huang Y Y 2019 Physica E 114 113589
[2] Jin J S, Wang S K, Zhou J H, Zhang W M and Yan Y J 2018 New J. Phys. 20 043043
[3] Yang K H, Di H Y, Wang H Y, Wang X and Yang A A 2021 Phys. Lett. A 389 127095
[4] Sun F L, Wang Y D, Wei J H and Yan Y J 2020 Chin. Phys. B 29 067204
[5] Aguado R, and Langreth D C 2000 Phys. Rev. Lett. 85 1946
[6] Izumida W and Sakai O 2000 Phys. Rev. B 62 10260
[7] Wang W Z 2011 Phys. Rev. B 83 075314
[8] Galpin M R, Logan D E and Krishnamurthy H R 2005 Phys. Rev. Lett. 94 186406
[9] Trocha P and Barnaś J 2012 Phys. Rev. B 85 085408
[10] Juergens S, Haupt F, Moskalets M and Splettstoesser J 2013 Phys. Rev. B 87 245423
[11] Li Y C, Chen X, Muga J G and Sherman E Y 2018 New J. Phys. 20 113029
[12] Karwat P and Machnikowski P 2015 Phys. Rev. B 91 125428
[13] Das S, Agarwal G S and Scully M O 2008 Phys. Rev. Lett. 101 153601
[14] Landauer R 1996 J. Math. Phys. 37 5259
[15] Büttiker M 1986 Phys. Rev. Lett. 57 1761
[16] Wingreen N S, Jauho A P and Meir Y 1993 Phys. Rev. B 48 8487
[17] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[18] Zhu Y, Maciejko J, Ji T, Guo H and Wang J 2005 Phys. Rev. B 71 075317
[19] Maciejko J, Wang J and Guo H 2006 Phys. Rev. B 74 085324
[20] Cazalilla M A and Marston J B 2002 Phys. Rev. Lett. 88 256403
[21] Schmitteckert P 2004 Phys. Rev. B 70 121302(R)
[22] Meisner F H, Feiguin A E and Dagotto E 2009 Phys. Rev. B 79 235336
[23] Anders F B and Schiller A 2005 Phys. Rev. Lett. 95 196801
[24] Anders F B and Schiller A 2006 Phys. Rev. B 74 245113
[25] Cheng Y C, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New J. Phys. 17 033009
[26] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
[27] Zheng X, Jin J S and Yan Y J 2008 New J. Phys. 10 093016
[28] Tanimura Y 2020 J. Chem. Phys. 153 020901
[29] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
[30] Zheng X, Yan Y J and Ventra M D 2013 Phys. Rev. Lett. 111 086601
[31] Oreg Y and Gordon D G 2003 Phys. Rev. Lett. 90 136602
[32] Lebanon E, Schiller A and Anders F B 2003 Phys. Rev. B 68 155301
[33] Chung C H, Zarand G and Wölfle P 2008 Phys. Rev. B 77 035120
[34] Tanaka Y, Kawakami N and Oguri A 2012 Phys. Rev. B 85 155314
[35] Chan I H, Fallahi P, Westervelt R M, Maranowski K D and Gossard A C 2003 Physica E 17 584-588
[36] McClure D T, DiCarlo L, Zhang Y, Engel H A, Marcus C M, Hanson M P and Gossard A C 2007 Phys. Rev. Lett. 98 056801
[37] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge:Cambridge University Press) pp. 47-65
[38] Mao H, Jin J S, Wang S K and Yan Y J 2021 J. Chem. Phys. 155 014104
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[8] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[9] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[10] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[15] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
No Suggested Reading articles found!