Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096701    DOI: 10.1088/1674-1056/ab8a34
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor

He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙)
Northwestern Polytechnical University, Xi'an 710072, China
Abstract  HfAlO/InAlAs metal-oxide-semiconductor capacitor (MOS capacitor) is considered as the most popular candidate of the isolated gate of InAs/AlSb high electron mobility transistor (HEMT). In order to improve the performance of the HfAlO/InAlAs MOS-capacitor, samples are annealed at different temperatures for investigating the HfAlO/InAlAs interfacial characyeristics and the device's electrical characteristics. We find that as annealing temperature increases from 280 ℃ to 480 ℃, the surface roughness on the oxide layer is improved. A maximum equivalent dielectric constant of 8.47, a minimum equivalent oxide thickness of 5.53 nm, and a small threshold voltage of -1.05 V are detected when being annealed at 380 ℃; furthermore, a low interfacial state density is yielded at 380 ℃, and this can effectively reduce the device leakage current density to a significantly low value of 1×10-7 A/cm2 at 3-V bias voltage. Therefore, we hold that 380 ℃ is the best compromised annealing temperature to ensure that the device performance is improved effectively. This study provides a reliable conceptual basis for preparing and applying HfAlO/InAlAs MOS-capacitor as the isolated gate on InAs/AlSb HEMT devices.
Keywords:  HfAlO/InAlAs MOS-capacitor      annealing temperature      interface      leakage current  
Received:  12 March 2020      Revised:  17 April 2020      Accepted manuscript online:  01 January 1900
PACS:  67.30.hp (Interfaces)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  61.72.uj (III-V and II-VI semiconductors)  
Corresponding Authors:  He Guan     E-mail:  he.guan@nwpu.edu.cn

Cite this article: 

He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙) Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor 2020 Chin. Phys. B 29 096701

[1] Moschetti G, Wadefalk N and Nilsson P A 2011 Solid State Electron. 64 47
[2] Haddadi A, Chevallier R and Dehzangi A 2017 Appl. Phys. Lett. 110 101
[3] Guan H, Lv H L, Guo H and Zhang Y M 2015 J. Appl. Phys. 118 195702
[4] Malmkvist M, Lefebvre E, Borg M, Desplanque L, Wallart X and Dambrine G 2018 IEEE Trans. Microwave Theory & Tech. 56 2685
[5] Guan H and Guo H 2017 Chin. Phys. B 26 058501
[6] Moschetti G, Wadefalk N and Nilsson P A 2012 IEEE Microwave & Wireless Compon. Lett. 22 144
[7] Cui X R and Lv H L 2018 J. Infrared & Millimeter Waves 37 385
[8] Hashizume T, Ootomo S and Inagaki T 2003 J. Vac. Sci. Technol. B 21 1828
[9] Guan H and Lv H L 2018 Thin Solid Film 661 137
[10] Wu L F, Zhang Y M and Lv H L 2015 Jpn. J. Appl. Phys. 54 110303
[11] Liu L N, Choi H W, Xu J P and Tang W M 2007 IEEE Trans. Electron Dev. 65 72
[12] Jin C J, Lv H L, Zhang Y M and Guan H 2016 Thin Solid Films 619 48
[13] Mikhelashvili V, Meyler B and Shneider J 2005 Microelectron. Reliab. 45 933
[14] Gao J, He G and Liu M 2017 J. Alloys Compd. 691 504
[15] Jin C J, Lv H L, Zhang Y M and Guan H 2016 Solid-State Electron. 123 106
[16] Lin Y C, Trinh H D and Chuang T W 2013 IEEE Electron Dev. Lett. 34 1229
[17] Trinh H, Lin Y, Wang H, Chang C, Kakushima K and Iwai H 2012 Appl. Phys. Express 5 1104
[18] Altuntas H, Donmez I, Ozgit-Akgun C and Biyikli N 2014 J. Vac. Sci. Technol. A 32 041504
[19] Liu C, Zhang Y M, Zhang Y M and Lv H L 2014 J. Appl. Phys. 116 142101
[20] Maleev N A, Bobrov M A, Kuzmenkov A G, Vasil'Ev A P and Kulagina M M 2018 Tech. Phys. Lett. 44 862
[21] Asif M, Chen C, Peng D, Xi W and Zhi J 2018 Solid State Electron. 142 36
[22] Guan H and Jing C Y 2018 Coating 8 417
[23] Brennan B, Galatage R V and Thomas K 2013 J. Appl. Phys. 114 317
[24] Inci D, Cagla O and Necmi B 2013 J. Vac. Sci. Technol. A 31 01A110
[25] Guan H, Lv H L, Guo H, Zhang Y M, Zhang Y M and Wu L F 2015 Chin. Phys. B 24 126701
[26] Terman L M 1962 Solid State Electron. 5 285
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[5] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[6] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[14] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[15] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
No Suggested Reading articles found!