Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096501    DOI: 10.1088/1674-1056/ab942e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction

Hamed Rezania, Farshad Azizi
Department of Physics, Razi University, Kermanshah, Iran
Abstract  We present the behaviors of both dynamical and static charge susceptibilities of doped armchair nanotubes using the Green function approach in the context of Holstein-model Hamiltonian. Specially, the effects of magnetization and gap parameter on the the plasmon modes of armchair nanotube are investigated via calculating correlation function of charge density operators. Random phase approximation has been implemented to find the interacting dynamical charge susceptibility. The electrons in this systems interacts with each other by mediation of dispersionless Holstein phonons. Our results show that the increase of gap parameter leads to decreasing intensity of charge collective mode. Also the frequency position of the collective mode tends to higher frequencies due to the gap parameter. Furthermore the number of collective excitation mode decreases with chemical potential in the presence of electron-phonon interaction. Finally the temperature dependence of static charge structure factor of armchair nanotubes is studied. The effects of the gap parameter, magnetization and electron-phonon interaction on the static structure factor are addressed in details.
Keywords:  armchair nanotube      Green's function  
Received:  17 April 2020      Revised:  13 May 2020      Accepted manuscript online:  19 May 2020
PACS:  65.80.Ck (Thermal properties of graphene)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
Corresponding Authors:  Hamed Rezania     E-mail:  rezania.hamed@gmail.com

Cite this article: 

Hamed Rezania, Farshad Azizi Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction 2020 Chin. Phys. B 29 096501

[1] Iijima S 1991 Nature 354 56
[2] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p. 305
[3] Hamada N, Sawada S and Oshiyama A 1992 Phys. Rev. Lett. 68 631
[4] Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J, Beyers R 1993 Nature 363 605
[5] Gao L, Zhou X and Ding Y 2007 Chem. Phys. Lett. 434 297
[6] Zhang Y, Wang F C and Zhao Y P 2012 Comput. Materials Science 62 87
[7] Martel R, Schmidt T, Hertel H R and Avouris A R 1998 Appl. Phys. Lett. 73 2447
[8] Derycke V, Martel R, Appenzeller J and Avouris P 2001 Nano Lett. 1 453
[9] Durkop T, Getty S A, Cobas E and Fuhrer M S 2004 Nano Lett. 4 35
[10] Aktruck A and Goldman N 2008 J. Appl. Phys. 103 053702
[11] Basko D M and Aleiner I L 2008 Phys. Rev. B 77 041409
[12] Park C H, Giustino F, Cohen M L and Louie S G 2008 Nano Lett. 8 4229
[13] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[14] Holstein T 1959 Ann. Phys. (N. Y) 8 325
[15] Capone M, Ciuchi S 2003 Phys. Rev. Lett. 91 186405
[16] Piscanec S et al. 2007 Phys. Rev. B 75 235430
[17] Piscanec S et al. 2015 Phys. Rev. B 75 035427
[18] Sasaki K, Sato K, Jiang J, Saito J, Onari S and Tanaka Y 2007 Phys. Rev. B 75 235430
[19] Doniach S and Sondheimer E H 1999 Green's Functions for Solid State Physicists (London: Imperial College Press) p. 205
[20] Liu Y and Willis R F 2010 Phys. Rev. B 81 081406
[21] Matz R and Luth H 1981 Phys. Rev. Lett. 46 500
[22] Jalabert R and Das Sarma S 1989 Phys. Rev. B 40 9723
[23] Hwang E H and Sarma S 1995 Phys. Rev. B 52 R8668
[24] Mahan G D 1993 Many Particle Physics (New York: Plenumn Press) p. 310
[25] Grosso G, Parravincini G P 2003 Solid State Physics (New York: Academic Press) p. 108
[26] Ando T 2006 J. Phys. Soc. Jpn. 75 074716
[27] Stauber T, Peres N M and Guinea F 2007 Phys. Rev. B 76 205423
[28] Castro A, Neto H and Guinea F 2007 Phys. Rev. B 75 045404
[29] Pyatkovskiy P K 2009 J. Phys.: Condens. Matter 21 025506
[30] Roldan R, Fuchs J N and Georbig M O 2009 Phys. Rev. B 80 085408
[31] Ramezanali M R, Vazifeh M M, Asgari R, Polini M and Macdonald A H 2009 J. Phys. A: Math. Theor. 42 214015
[32] Migdal A B and Eksp Z 1958 Teor. Fiz. 34 1438
[33] Bruus H, Flensberg K 2004 Many Body Quantum Theory in Condensed Matter Physics (Oxford: Oxford University Press) p. 215
[34] Micnas R, Ranninger J and Robaszkiewicz S 1990 Rev. Mod. Phys. 62 113
[1] Reduction of interfacial thermal resistance of overlapped graphene by bonding carbon chains
Yuwen Huang(黄钰文), Wentao Feng(冯文韬), Xiaoxiang Yu(余晓翔), Chengcheng Deng(邓程程), and Nuo Yang(杨诺). Chin. Phys. B, 2020, 29(12): 126303.
[2] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[3] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[4] The affection on the nature of percolation by concentration of pentagon-heptagon defects in graphene lattice
Yuming Yang(杨宇明), Baohua Teng(滕保华). Chin. Phys. B, 2018, 27(10): 106401.
[5] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[6] Thermal conduction of one-dimensional carbon nanomaterials and nanoarchitectures
Haifei Zhan(占海飞), Yuantong Gu(顾元通). Chin. Phys. B, 2018, 27(3): 038103.
[7] Thermal transport in twisted few-layer graphene
Min-Hua Wang(王敏华), Yue-E Xie(谢月娥), Yuan-Ping Chen(陈元平). Chin. Phys. B, 2017, 26(11): 116503.
[8] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
[9] Thermal conductivity of carbon nanoring linked graphene sheets:A molecular dynamics investigation
Gang Shi(石刚), Jianwei Zhang(张鉴炜), Yonglv He(贺雍律), Su Ju(鞠苏), Dazhi Jiang(江大志). Chin. Phys. B, 2017, 26(10): 106502.
[10] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[11] Lattice vibration and thermodynamical properties of a single-layergraphene in the presence of vacancy defects
Sha Li(黎莎), Zeng-Tao Lv(吕增涛). Chin. Phys. B, 2017, 26(3): 036303.
[12] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[13] First principle calculations of thermodynamic properties of pure graphene sheet and graphene sheets with Si, Ge, Fe, and Co impurities
A Kheyri, Z Nourbakhsh. Chin. Phys. B, 2016, 25(9): 093102.
[14] High temperature characteristics of bilayer epitaxial graphene field-effect transistors on SiC Substrate
Ze-Zhao He(何泽召), Ke-Wu Yang(杨克武), Cui Yu(蔚翠), Qing-Bin Liu(刘庆彬), Jing-Jing Wang(王晶晶), Jia Li(李佳), Wei-Li Lu(芦伟立), Zhi-Hong Feng(冯志红), Shu-Jun Cai(蔡树军). Chin. Phys. B, 2016, 25(6): 067206.
[15] Thermal transport properties of defective graphene: A molecular dynamics investigation
Yang Yu-Lin (杨宇霖), Lu Yu (卢宇). Chin. Phys. B, 2014, 23(10): 106501.
No Suggested Reading articles found!